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SUMMARY

Obesity and metabolic syndrome reflect the dysre-
gulation of molecular pathways that control energy
homeostasis. Here, we show that the p75 neurotro-
phin receptor (p75NTR) controls energy expenditure
in obese mice on a high-fat diet (HFD). Despite no
changes in food intake, p75NTR-null mice were pro-
tected from HFD-induced obesity and remained
lean as a result of increased energy expenditure
without developing insulin resistance or liver steato-
sis. p75NTR directly interacts with the catalytic sub-
unit of protein kinase A (PKA) and regulates cAMP
signaling in adipocytes, leading to decreased lipol-
ysis and thermogenesis. Adipocyte-specific deple-
tion of p75NTR or transplantation of p75NTR-null white
adipose tissue (WAT) into wild-type mice fed a HFD
protected against weight gain and insulin resistance.
Our results reveal that signaling from p75NTR to
cAMP/PKA regulates energy balance and suggest
that non-CNS neurotrophin receptor signaling could
be a target for treating obesity and the metabolic
syndrome.
INTRODUCTION

Obesity, and the ensuing metabolic syndrome characterized by

type 2 diabetes, hepatic steatosis, and atherosclerosis, is a

worldwide epidemic that increases morbidity and mortality.

Obesity develops when energy intake chronically exceeds en-

ergy expenditure (Spiegelman and Flier, 2001). While many fac-

tors control weight gain, glucose, and lipidmetabolism (O’Rahilly

and Farooqi, 2006), the molecular mechanisms that dysregulate

energy balance remain poorly understood. By understanding

these mechanisms, we can develop treatments for obesity and

its comorbidities.
Studies on energy intake have identified several pathways that

control appetite and hypothalamic functions, including leptin,

neuropeptide Y, and melanocortin receptors (Spiegelman and

Flier, 2001). Intriguingly, neurotrophin activation of cognate tyro-

sine kinase (Trk) receptors correlates with hypothalamic sup-

pression of appetite control. Indeed, brain-derived neurotrophic

factor (BDNF) signals through TrkB in the hypothalamus to sup-

press appetite and reduce body weight (Lyons et al., 1999; Xu

et al., 2003b). On a normal diet, BDNF+/� mice (Lyons et al.,

1999) or mice conditionally depleted of BDNF in neurons (Xu

et al., 2003b) overeat and become obese. These results suggest

that neurotrophin receptor signaling affects how the CNS con-

trols energy intake and body weight.

Neurotrophins and their receptors are also expressed in

several peripheral metabolic tissues, suggesting that non-CNS

molecular networks might regulate energy expenditure. Here,

we report that loss of p75 neurotrophin receptor (p75NTR) pro-

tects mice from obesity and the metabolic syndrome. p75NTR

regulates energy expenditure and thermogenesis, and its adipo-

cyte-specific depletion reduces obesity. These findings suggest

that manipulating non-CNS functions of p75NTR signaling could

provide a new therapeutic approach for obesity and the meta-

bolic syndrome.

RESULTS

p75NTR Knockout Mice Are Resistant to HFD-Induced
Obesity, Insulin Resistance, and Hepatic Steatosis
p75NTR is widely expressed in metabolic tissues, including liver

(Cassiman et al., 2001; Passino et al., 2007), white adipose tissue

(WAT) (Baeza-Raja et al., 2012; Peeraully et al., 2004), and skel-

etal muscle (Deponti et al., 2009), but we do not know whether it

affects obesity. p75NTR expression increased in WAT after

3 weeks of a high-fat diet (HFD), but not in skeletal muscle or liver

(Figure 1A). p75NTR was also highly expressed in differentiated

3T3L1 adipocytes and mouse embryonic fibroblast (MEF)-

derived adipocytes (Figure S1A). To evaluate whether p75NTR af-

fects obesity, p75NTR�/� mice were placed on a HFD and
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Figure 1. p75NTR Deficiency Protects Mice from HFD-Induced Obesity and Metabolic Syndrome

(A) p75NTR protein (left) and RNA (right) expression in WAT, skeletal muscle (SKM), and liver fromWT and p75NTR�/� mice on normal diet (ND) and 3 and 8 weeks

(w) on a HFD. Representative immunoblot is shown from three independent experiments.

(B) Body weight of WT and p75NTR�/� mice on a HFD. *p < 0.01; **p < 0.001, two-way ANOVA. n = 7 mice per group.

(C) Representative MRI images of WT and p75NTR�/� mice on a HFD (left) and tissue volumes of WT and p75NTR�/� mice on a HFD (right). **p < 0.01; ns, not

significant, unpaired Student’s t test. n = 7 mice per group.

(D) Weights of WT and p75NTR�/� inguinal and intraperitoneal (IP) fat on a HFD. *p < 0.05, ***p < 0.001, unpaired Student’s t test. n = 7 mice per group.

(E) Basal insulin levels from WT and p75NTR�/� mice. **p < 0.01; ns, unpaired Student’s t test. n = 4 mice per group.

(F and G) Glucose tolerance (F) and insulin tolerance (G) tests in WT (n = 13) and p75NTR�/� (n = 8) mice after 20 weeks on HFD. *p < 0.05; **p < 0.01; ***p < 0.001,

two-way ANOVA.

(H) Glucose infusion rates from WT (n = 5) and p75NTR�/� (n = 7) mice on an HFD. *p < 0.05, unpaired Student’s t test.

(I) Total and insulin-stimulated GDRs of WT (n = 5) and p75NTR�/� (n = 7) mice on an HFD. *p < 0.05, unpaired Student’s t test.

(J) Representatives photographs (top) and histological images (bottom) of livers from WT and p75NTR�/� mice on an HFD (n = 3 mice per group).

Data are shown as means ± SEM.

See also Figures S1 and S2.
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compared to their wild-type (WT) littermates. Interestingly,

p75NTR�/� mice were resistant to weight gain and remained

lean after several weeks on a HFD compared to controls (Figures

1B and S1B). p75NTR�/� mice also showed reduced adiposity,

fat volume, and total weight of inguinal and intraperitoneal fat

pads (Figures 1C and 1D). Weight did not differ between

p75NTR+/� and WT mice on a HFD (Figure S1C). Adipocytes

were 4-fold larger in control than in p75NTR�/� fat pads from

mice on a HFD (Figure S1D). After just 3 weeks on a HFD, adipo-

cytes in WT mice were enlarged, while epididymal fat from

p75NTR�/� mice contained smaller adipocytes (Figure S1E).

Obesity is a key trigger for type 2 diabetes, so we explored

whether p75NTR�/� mice are protected from insulin resistance.

Basal insulin levels were 3-fold higher in WT than in p75NTR�/�
2 Cell Reports 14, 1–14, January 12, 2016 ª2016 The Authors
mice on a HFD (Figure 1E). p75NTR�/� mice also displayed

increased insulin sensitivity, markedly improved glucose toler-

ance, and enhanced glucose lowering effects of insulin (Figures

1F, 1G, and S1F). With the hyperinsulinemic-euglycemic clamp

technique, we found that glucose infusion rates were higher in

p75NTR�/� mice than in WT mice on a HFD (Figure 1H), demon-

strating improved systemic insulin sensitivity. Furthermore,

tracer-derived Rd or glucose disposal rate (GDR) and insulin-

stimulated GDR were higher in p75NTR�/� mice (Figure 1I), indi-

cating increased muscle insulin sensitivity. Basal hepatic

glucose production (HGP) did not change in p75NTR�/� mice,

but insulin-induced suppression of HGP increased from 40%

to 64% (Figures S1G and S1H), showing decreased hepatic in-

sulin resistance induced by a HFD.



Figure 2. p75NTR Deficiency Increases

Energy Expenditure, Fat Oxidation, and

Lipolysis

(A) Food consumption (left) and energy intake

(right) of WT (n = 7) and p75NTR�/� (n = 8) mice

on a HFD. ns, not significant, unpaired Student’s

t test.

(B) Oxygen consumption (left) and energy expen-

diture (right) normalized to lean body mass in WT

(n = 7) and p75NTR�/� (n = 8) mice on a HFD. **p <

0.01; ***p < 0.001, Student’s t test.

(C) Fat oxidation normalized to lean body mass in

WT and p75NTR–/– mice on a HFD. ***p < 0.001,

unpaired Student’s t test. n = 6 mice per group.

(D) Oxidation of [1-14C]-palmitate to 14CO2 by ad-

ipocytes isolated from WT and p75NTR�/� mice.

**p < 0.01, unpaired Student’s t test. Results are

from three independent experiments.

(E) Ucp1 and Dio2 RNA expression in primary ad-

ipocytes from WT and p75NTR�/� mice. **p < 0.01,

unpaired Student’s t test. n = 6 mice per group.

(F) Serum levels of adiponectin in WT and

p75NTR�/� mice on a HFD. *p < 0.05, unpaired

Student’s t test. n = 3 mice per group.

Data are shown as means ± SEM.

See also Figures S3 and S4.
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HFD triggers non-alcoholic fatty liver disease, which can cause

liver steatosis, cirrhosis, and hepatocellular cancer (Osterreicher

andBrenner, 2007). After 16weeks on aHFD, controlmice devel-

oped and massively accumulated hepatic lipids and had

increased liver weight, as expected, while p75NTR�/� mice were

protected (Figures 1J and S2A). Livers from p75NTR�/� mice on

a HFD did not have higher levels of Sterol Regulatory Element-

Binding Protein 1 (SREBP-1) (Figure S2B), a transcription factor

that drives lipogenesis andmolecularlymarks liver steatosis (Shi-

momura et al., 1999). Liver triglycerides, SREBP-1 target genes,

fatty-acid-uptake genes, and fatty-acid-oxidation genes were

reduced in p75NTR�/�mice compared toWTmice on a HFD (Fig-

ures S2C and S2D). Moreover, p75NTR�/� mice were protected

from increased cholesterol and HFD-induced inflammation in

WAT (Figures S2E and S2F). These results demonstrate that

loss of p75NTR protects against obesity and the metabolic

syndrome.

Loss of p75NTR Increases Energy Expenditure and Fat
Oxidation
Food consumption and energy intake normalized to lean mass

were similar in WT and p75NTR�/� mice (Figure 2A), suggesting

that the lean phenotype of p75NTR�/� mice might be due to

changes in energy expenditure and not appetite. Indeed, total

oxygen consumption and energy expenditure were dramatically

increased in p75NTR�/� compared to WT mice (Figure 2B),
despite similar activity levels (Figure S3A). CO2 production was

also greater in p75NTR�/� mice (Figure S3B). Increased energy

expenditure was confined to fat oxidation (Figures 2C and S3C).

Given that WAT regulates systemic energy (Rosen and Spie-

gelman, 2014), we analyzed fat oxidation and thermogenesis in

adipocytes. Isolated adipocytes from p75NTR�/� mice had 2.4-

fold higher fat oxidation than those from WT mice (Figure 2D),

and 3-fold and 4-fold higher uncoupling protein 1 (Ucp1) and de-

iodonase-2 (Dio2) expression, respectively (Figure 2E). Peroxi-

some proliferator-activated receptors (Ppars) d and g (Ppard

and Pparg, respectively) and Ucp2 were unaffected (data not

shown). Ucp1 protein and RNA, Ppard coactivator-1a (Pgc-1a),

and Ppara gene expression were increased in p75NTR�/� WAT

(Figures S3D and S3E). After cold exposure, core body temper-

atures were elevated in p75NTR�/� mice (Figure S3F). Adiponec-

tin, an adipocyte-derived hormone that increases fat oxidation

(Fruebis et al., 2001) and correlates inversely with insulin resis-

tance (Kadowaki et al., 2006), was higher in serum from

p75NTR�/� mice after HFD (Figure 2F). These results are consis-

tent with increased fat oxidation in p75NTR�/� adipocytes (Fig-

ure 2C) and insulin sensitivity in p75NTR�/� mice (Figures 1E–1I

and S1F–S1H). Adipocyte differentiation markers and lipid accu-

mulation were similar between WT and p75NTR�/� adipocytes

(Figures S4A and S4B), suggesting that decreased adipogenesis

was not due to impaired adipocyte differentiation in p75NTR�/�

mice. Decreased adipogenesis was also not due to altered
Cell Reports 14, 1–14, January 12, 2016 ª2016 The Authors 3
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lipogenesis capacity, as expression of lipogenic genes, including

fatty acid synthase (Fas) and diglyceride acyl-transferase-1

(Dgat1), was not affected (Figure S4C). In brown adipose tissue

(BAT), p75NTR expression did not increasewithHFD (Figure S4D).

Expression of thermogenic genes, fat oxidation, and molecular

markers for brown adipocytes were also not different between

BAT from WT and p75NTR�/� mice on a HFD (Figure S4E), sug-

gesting that increased energy expenditure was not due to

p75NTR expression in BAT. These data indicate that loss of

p75NTR promotes fat oxidation and energy expenditure in WAT.

p75NTR Depletion Increases Adipocyte Lipolysis by
Regulating the cAMP/PKA Signaling Pathway
Increased lipolysis in WAT without release of circulating free

fatty acids (FFAs) promotes energy dissipation and fat oxidation

and protects against diet-induced obesity (Ahmadian et al.,

2009). We examined whether lipolysis decreased adiposity in

p75NTR�/� mice and increased energy expenditure and fat

oxidation in p75NTR�/� adipocytes. While basal rates were un-

changed (Figure S5A), FFA and glycerol release were higher in

WAT explants and MEF-derived adipocytes from p75NTR�/�

mice after isoproterenol stimulation (Figures 3A, S5B, and

S5C), while circulating FFA levels were unaffected in p75NTR�/�

mice on aHFD (Figure S5D). Isoproterenol increased FFA release

by �1.6-fold and �2.5-fold in WT and p75NTR�/� WAT, respec-

tively (Figure S5B), similar to prior studies (Jaworski et al.,

2009). Neurotrophins did not affect FFA secretion in WT or

p75NTR�/�WAT (Figure S5E), suggesting that lipolysis is a neuro-

trophin-independent function.

Signaling through the cyclic AMP (cAMP)/protein kinase A

(PKA) pathway primarily regulates lipolysis (Zechner et al.,

2012). We found that lipolysis and cAMP levels were significantly

higher in p75NTR�/� compared to WTWAT on a HFD (Figures 3A

and 3B) but not on normal chow (Figures 3B and S5F). Inhibiting

PKA with H-89 decreased FFA release in p75NTR�/� WAT (Fig-

ure 3C), indicating that cAMP/PKA signaling is required for

increased lipolysis in p75NTR�/� WAT. cAMP/PKA signaling pro-

motes lipolysis in WAT via PKA-mediated phosphorylation of

hormone-sensitive lipase (HSL) (Haemmerle et al., 2002; Osuga

et al., 2000). We found that phosphorylated HSL (P-HSL)

was increased in p75NTR�/� WAT and MEF-derived adipocytes

(Figures 3D and S5G). Hsl gene expression was increased

by �1.8-fold (Figure S5H), but HSL protein was not significantly

increased in p75NTR�/� WAT (Figure 3D) and MEF-derived

adipocytes (Figure S5G). Phosphorylation of other PKA tar-

gets, including perilipin, cAMP response element-binding

protein (CREB) (P-CREB), and p38 (P-p38), were also increased

in p75NTR�/� WAT (Figure 3D) and MEF-derived adipocytes

(Figure S5G). These results support that p75NTR regulates lipol-

ysis by modulating cAMP/PKA signaling and catecholamine

sensitivity.

p75NTR Directly Binds the Regulatory and Catalytic PKA
Subunits and Regulates PKA Holoenzyme Dissociation
Dissociation of the PKA subunits is a critical step for PKA activa-

tion (Taylor et al., 2012). To explore how p75NTR regulates cAMP/

PKA signaling, we examined whether p75NTR regulates the tetra-

meric PKA holoenzyme by studying the interaction between the
4 Cell Reports 14, 1–14, January 12, 2016 ª2016 The Authors
catalytic (Ca) and regulatory (RIIb) PKA subunits. Intriguingly, the

Ca subunit was dissociated from RIIb in p75NTR�/� MEF-derived

adipocytes (Figure 3E), despite no differences in protein expres-

sion of PKA subunits (Figure 3F). These results indicate that

p75NTR deletion causes constitutive dissociation and activation

of the PKA catalytic subunit, which agrees with increased

cAMP levels (Figure 3B), lipolysis (Figures 3A and S5B), and

HSL phosphorylation (Figures 3D and S5G) in p75NTR�/� adipo-

cytes. p75NTR bound both Ca and RIIb when co-immunoprecip-

itated from overexpression systems (Figure 3G) and endoge-

nously in WAT (Figure 3H). In binding assays, the intracellular

domain of p75NTR (p75ICD) directly interacted with both Ca

and RIIb, but not with the unrelated protein Hsp20 (Figure 3I).

Screening an array library of overlapping p75ICD 25-mer pep-

tides revealed that Ca and RIIb bound within helix 5 (peptides

16–21, amino acids [aa] 348–397) and helix 6 (peptides 23–25,

aa 383–417) of the death domain (DD) of p75ICD, respectively

(Figure 4A). An alanine scanning substitution array of p75ICD

identified key residues that enable its interaction with Ca (residue

C379) and RIIb (residues P380, R382, L385, R404, R405, and

R408) (Figures 4B and 4C). Thus, we performed site-specific

mutagenesis of p75NTR (Figure 4D) and found that the C379A

mutation abolished its interaction with Ca, while mutations of

the other residues for RIIb abolished its interaction with RIIb (Fig-

ures 4E and 4F). These results support the finding that p75NTR

directly interacts with PKA subunits through motifs within its DD.

Next, we tested in adipocytes the interaction of p75NTR with

cAMP-degrading phosphodiesterases (PDEs) and the functional

consequences of p75NTR mutants that disrupt the interaction

of p75NTR with PKA subunits. Consistent with our prior study

(Sachs et al., 2007), p75NTR co-immunoprecipitated with

cAMP-hydrolyzing enzyme phosphodiesterase 4A5 (PDE4A5) in

WAT and adipocytes (Figure S6A). Lentiviral expression of WT

p75NTR or p75NTRC379A reduced P-HSL levels in p75NTR�/�

MEF-derived adipocytes by �2-fold and �1.5-fold, respectively

(Figure 4G). Expression of the p75NTR2M mutant, which reduces

binding of p75NTR to PKA-RIIb, did not alter P-HSL (Figure 4G).

We performed these analyses with isoproterenol (Figure 4G),

because at baseline, control lentivirus increased basal levels of

P-HSL (Figure S6B). Lentiviral expression of both WT p75NTR

and p75NTRC379A reduced cAMP levels (Figure S6C), suggest-

ing that p75NTR regulates cAMP/PKA signaling through multiple

pathways.

Adipocyte-Specific p75NTR Knockout Protects from
HFD-Induced Obesity and Insulin Resistance
To investigate how adipose tissue contributes to the lean pheno-

type and insulin sensitivity of p75NTR�/� mice on a HFD, we

depleted p75NTR specifically in adipocytes (p75AKO) by crossing

conditional p75NTR knockout (p75F/F) (Bogenmann et al., 2011)

with aP2-cre (Adipocyte-cre) mice, which show gene recombi-

nation specifically in adipocytes without gene recombination in

brain, muscle, liver, stromal vascular cells, and macrophages

(Ahmadian et al., 2011; Barak et al., 2002; He et al., 2003; Lee

et al., 2014; Li et al., 2011; Paschos et al., 2012; Qi et al.,

2009). In p75AKO mice, p75NTR was specifically deleted in adi-

pose tissue and not the brain and muscle (Figures 5A and 5B).

Strikingly, p75AKO mice weighed significantly less (Figure 5C)



Figure 3. p75NTR Regulates Lipolysis via cAMP/PKA Signaling

(A) Isoproterenol-stimulated FFA and glycerol levels in WAT from WT and p75NTR�/� mice on a HFD. **p < 0.01; ***p < 0.001, two-way ANOVA. n = 8 mice per

group.

(B) cAMP accumulation in WAT from WT and p75NTR�/� mice on normal chow (ND) or 10 weeks (w) on a HFD. *p < 0.05, ns, not significant, unpaired Student’s

t test. n = 4 mice per group.

(C) FFA levels in WAT treated with the PKA inhibitor, H-89 from WT, and p75NTR�/� mice on a HFD (WT or p75NTR�/� versus p75NTR�/� treated with H-89.

***p < 0.001, two-way ANOVA. n = 5 mice per group.

(D) P-HSL, HSL, P-p38, p38, P-CREB, CREB, and p75NTR protein expression (left) and immunoprecipitation (IP) of lysates with anti-perilipin followed by western

blottingwith anti-phospho-PKA (p-PKA) to detect all PKA-phosphorylation sites on perilipin and total perilipin expression (n = 2mice per group) (right) inWAT from

WT and p75NTR�/� mice on HFD. Phospho-perilipin levels normalized to GAPDH were quantified by densitometry (D represents fold changes). Representative

immunoblots are shown from n = 12 mice per group.

(E) Immunoprecipitation of PKA-Ca protein followed by western blotting to detect PKA RIIb and RIIa fromWT and p75NTR�/� MEF-derived adipocytes treated or

not with isoproterenol (ISO). Representative immunoblot from three independent experiments.

(F) PKA-Ca, PKA-RIIb, and PKA-RIIa protein expression in WT and p75NTR�/� MEF-derived adipocytes. Representative immunoblots from three independent

experiments.

(G) Immunoprecipitation of HA-PKA-Ca protein (top) andmyc-PKA-RIIb (bottom) followed bywestern blotting to detect GFP-p75NTR in 293T cells overexpressing

indicated constructs. Representative immunoblots from three independent experiments.

(H) Immunoprecipitation of PKA-RIIb (top) and PKA-Ca (bottom) protein followed by western blotting to detect p75NTR in WAT from WT mice. Representative

immunoblots from three independent experiments.

(I) ELISA binding assays between recombinant His-p75ICD and increasing concentrations of His-PKA-Ca (left) and PKA-RIIb (right). His-Hsp20 was used as a

control. Results are from three independent experiments performed with duplicates. Kd values were estimated using a one-site binding model.

Data are shown as means ± SEM.

See also Figure S5.
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and showed improved glucose and insulin tolerance (Figure 5D),

suggesting that specifically deleting p75NTR from adipose tissue

protects against diet-induced obesity and type 2 diabetes. In

addition, livers from p75AKO mice on a HFD showed reduced

SREBP-1 and hepatic lipid accumulation compared to WT

mice (Figures S7A and S7B). In contrast, muscle-specific

knockout mice (p75SKMKO) had weight gain similar to that of
p75F/F and muscle creatine kinase (MCK)-cre (SKM-cre) control

mice (Figures 5E and 5F). These results support the reduced

body weight gain and increased insulin sensitivity in p75NTR�/�

mice on a HFD, demonstrating that deleting p75NTR from adipo-

cytes protects against HFD-induced obesity and insulin resis-

tance. p75AKO mice showed increased energy expenditure and

fat oxidation, despite similar activity and no changes in food
Cell Reports 14, 1–14, January 12, 2016 ª2016 The Authors 5



Figure 4. p75NTR Interacts with the PKA Ca Subunit to Regulate Lipolysis

(A) Peptide array mapping of the p75ICD sites required for the interaction with PKA-Ca and PKA-RIIb. Schematic diagram of p75ICD shows the domain or-

ganization and peptide location, length, and sequences. TM, transmembrane domain; JX, juxtamembrane domain.

(B) Alanine scanning substitution arrays of the identified interacting p75NTR peptides 360–384 and 375–399 probed with PKA-Ca. Red amino acids indicate

substitutions that block the interaction.

(C) Alanine scanning substitution arrays of interacting p75NTR peptides 368–392, 383–407, and 388–412 probed with PKA-RIIb. Highlighted in red are the aa

whose substitution blocks the interaction.

(D) p75NTR mutant constructs generated.

(E) Immunoprecipitation of myc-PKA-Ca protein followed by western blotting to detect HA-p75NTR WT and HA-p75NTRC379A or HA-p75NTR 3M in 293T cells

overexpressing indicated constructs. Representative immunoblots are shown from three independent experiments.

(F) Immunoprecipitation of myc-PKA-RIIb protein followed by western blotting to detect HA-p75NTR WT and HA-p75NTR P380A, HA-p75NTR R404A, HA-p75NTR

2M, or HA-p75NTR 3M in 293T cells overexpressing indicated constructs. Representative immunoblots from three independent experiments.

(G) P-HSL, HSL, and p75NTR protein expression in WT and p75NTR�/� MEF-derived adipocytes infected with lentiviral vectors overexpressing the indicated

constructs and treated or not with isoproterenol (ISO). Representative immunoblots from three independent experiments.

See also Figure S6.
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consumption and energy intake (Figures 6A–6C and S7C–S7E),

similar to p75NTR�/� mice on a HFD (Figures 2 and S3A–S3C).

WAT isolated from p75AKO mice showed increased metabolic

rates via increased expression of thermogenic, brown adipose

identity, and lipolytic genes such asDio2,Ucp-1, Pgc-1a, Ppara,

and Hsl (Figure 6D). HSL phosphorylation was also increased in

WAT of p75AKO compared to control mice (Figure 6E). These re-

sults indicate that adipose-specific expression of p75NTR is a

major contributor to obesity, energy expenditure, and lipolysis.

To further analyze the adipose-specific role of p75NTR in vivo,

we transplanted epididymal fat pads from p75NTR�/� mice

into the visceral area of WT (p75NTR�/� /WT) mice (Figure 7A).

After 6 weeks on a HFD, the increase in body weight was signif-

icantly lower in p75NTR�/� / WT compared to WT / WT WAT
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or sham-operated controls (Figure 7B). p75NTR�/� / WT mice

also showed improved glucose and insulin tolerance 10 weeks

after a HFD (Figure 7C). Insulin sensitivity was unaffected in

WT / WT or sham-operated mice (Figure 7C), as expected

(Tran et al., 2008). The effect of p75NTR�/� WAT transplantation

on body weight and insulin sensitivity on WT mice is significant,

and the values obtained are at a range similar to that observed in

other transplant studies (Chen et al., 2003; Minamino et al.,

2009).WT/p75NTR�/�mice remained lean and insulin sensitive

upon a HFD (Figures 7D–7F), likely because they retained a sub-

stantial amount of p75NTR�/� fat. These results indicate that

p75NTR expression in WAT regulates fat oxidation, thermogene-

sis, lipolysis, and HFD-induced weight gain and insulin resis-

tance in mice.



Figure 5. p75NTR Deficiency in WAT Protects Mice from HFD-Induced Obesity and Insulin Resistance

(A) p75NTR protein expression in WAT and the CNS from p75F/F, Adipocyte-cre, and p75AKO mice (n = 5 mice per group). Representative blot is shown.

(B) p75NTR expression in brain, WAT (epididymal fat), SUBC (subcutaneous inguinal fat), BAT, Soleus (skeletal muscle), kidney, and heart from Adipocyte-cre and

p75AKO mice (n = 5 mice per group).

(C) Body weight of p75F/F (n = 18), Adipocyte-cre (n = 7), and p75AKO (n = 10) mice on a HFD. **p < 0.01; ***p < 0.001, two-way ANOVA.

(D) Glucose (left) and insulin tolerance (right) tests inAdipocyte-cre (n = 7) and p75AKO (n = 10) mice after 8 weeks on a HFD. *p < 0.05; **p < 0.01; ***p < 0.001, two-

way ANOVA.

(E) p75NTR protein expression in skeletal muscle from p75F/F (n = 3), SKM-cre (n = 2), and p75SKMKO mice (left) (n = 3). Quantifications of western blot analysis

for p75NTR in skeletal muscle from p75F/F, SKM-cre, and p75SKMKO mice (right). **p < 0.01, Tukey’s multiple comparisons test and one-way ANOVA; ns, not

significant.

(F) Body weight of p75F/F (n = 18), SKM-cre (n = 10), and p75SKMKO (n = 15) mice on a HFD (ns, not significant, two-way ANOVA).

Data are shown as means ± SEM.

See also Figure S7.
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DISCUSSION

Many studies have addressed the key mechanisms in adipo-

cytes that regulate energy balance, but the molecular links be-

tween diet, energy storage and mobilization, and signaling

remain unclear. While studies have shown that neurotrophins

and their receptors regulate appetite (Lyons et al., 1999; Xu

et al., 2003b), we report a surprising role for the neurotrophin re-

ceptor p75NTR in adipose tissue. We found that p75NTR is

upregulated in adipocytes after a HFD, where it directly sup-

presses PKA activity to attenuate lipolysis, fat oxidation,

and thermogenesis and renders adipose tissue resistant to cate-

cholamine stimulation. Although p75NTR�/� mice did not show
differences in appetite or physical activity, they were protected

against diet-induced weight gain, type 2 diabetes, atheroscle-

rosis, inflammation, and hepatic steatosis, suggesting that

p75NTR regulates obesity and its comorbidities. In cell-autono-

mous systems, p75NTR did not affect fat cell differentiation,

which further supports its specificity in regulating cAMP/PKA

signaling and thermogenesis. Additionally, specifically depleting

p75NTR in adipocytes protected mice from HFD-induced obesity

and insulin resistance. In contrast, loss of BDNF and TrkB regu-

late body weight by increasing appetite on normal chow (Lyons

et al., 1999; Xu et al., 2003b). Therefore, the metabolic outcome

of neurotrophin receptor signaling in vivo may depend on the

balance between neurotrophin-dependent central regulation of
Cell Reports 14, 1–14, January 12, 2016 ª2016 The Authors 7



Figure 6. p75NTR Deficiency in WAT Increases Thermogenesis and Lipolysis

(A) Oxygen consumption normalized to lean body mass in Adipocyte-cre and p75AKO mice on a HFD (n = 6 mice per group).

(B) Food consumption (left) and energy intake (right) of Adipocyte-cre (n = 10) and p75AKO (n = 12) mice over 4 days after 10 weeks of a HFD. ns, not significant,

unpaired Student’s t test.

(C) Fat oxidation normalized to lean body mass in Adipocyte-cre and p75AKO mice on HFD (***p < 0.001, unpaired Student’s t test; n = 6 mice per group).

(D) Ucp1, Hsl, Pgc-1a, Ppara, and Dio2 RNA expression in WAT from p75F/F, Adipocyte-cre, and p75AKO mice on a HFD. *p < 0.05; **p < 0.01, Tukey’s multiple

comparisons test and one-way ANOVA; ns, not significant. n = 4 mice per group.

(E) P-HSL and HSL protein expression in WAT from p75F/F (n = 2), Adipocyte-cre (n = 3), and p75AKO (n = 2) mice on a HFD.

Data are shown as means ± SEM.

See also Figure S7.
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food intake by BDNF/TrkB signaling and neurotrophin-indepen-

dent peripheral regulation of energy expenditure in fat by p75NTR.

Thus, developing agents that target p75NTR in the periphery may

provide an attractive therapeutic intervention for preventing

obesity, liver steatosis, and diabetes.

Loss of p75NTR dramatically increased cAMP levels and PKA

activity in adipocytes. Because anchoring proteins regulate

spatiotemporal control of cAMP/PKA signaling (McConnachie

et al., 2006), p75NTR may maintain the PKA holoenzyme in

an inactive state and might also be part of a multienzyme

anchor complex that coordinates PKA to specific subcellular

locations. We show that p75NTR directly interacts with the regu-

latory (RIIb) and catalytic (Ca) subunits of PKA. Interestingly, ge-

netic deletion of RIIb remarkably resembles the phenotype of

p75NTR�/� mice, since RIIb�/� mice are also resistant to HFD-

induced obesity and type 2 diabetes (Cummings et al., 1996;

Schreyer et al., 2001). In mice, it induces a compensatory in-

crease in the RIa subunit, generating a tetrameric holoenzyme

that binds more avidly to cAMP (Cummings et al., 1996). In

contrast, we showed that deleting p75NTR causes dissociation

of the PKA subunits without affecting the levels of RIa. These re-

sults suggest that changes in both the levels of the PKA subunits

and modifications of the conformation of the PKA holoenzyme

might control the lipolytic pathway in adipocytes. Triggering

b-adrenergic receptors in adipocytes stimulates energy expen-

diture by cAMP-dependent increases in lipolysis and fatty-acid

oxidation (Song et al., 2010). Our study shows similar effects be-
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tween isoproterenol-stimulated and p75NTR�/� adipocytes, sug-

gesting that loss of p75NTR increases cAMP and lipolysis. Thus,

the interaction between p75NTR and PKA regulates the formation

of the PKA holoenzyme, and p75NTR deletion increases cAMP

levels, constitutive PKA dissociation, lipolysis, and energy

expenditure. Interestingly, feedback mechanisms reciprocally

link cAMP levels and PKA activity—PKA phosphorylation can

inhibit adenylyl cyclases and increase PDE4 activity (Iwami

et al., 1995; MacKenzie et al., 2002)—which could be affected

in p75NTR�/� adipocytes. Future studies that knock out PDE4A,

PKA-Ca, and PKA-RIIb subunits from mice may reveal how the

p75NTR-controlled PKA dissociation contributes to cAMP/PKA

signaling in adipocytes. Also, generating novel knockin mouse

models with point mutation(s) that selectively inhibit the interac-

tion between p75NTR and PKA in vivo may reveal the relative

contribution of p75NTR signal transduction pathways in meta-

bolic diseases and other biological functions within and outside

of the nervous system.

p75NTR interacts with both PKA and PDEs, and PKA works

with PDEs to create a signaling complex, or ‘‘signalosome’’ (Tay-

lor et al., 2012). Similar to p75NTR, A-kinase anchoring proteins

(AKAPs) directly bind PKA and PDEs to compartmentalize

cAMP/PKA signaling by associating with target effectors, sub-

strates, and signal termination (Baillie et al., 2005; Carr et al.,

1991; Dodge-Kafka et al., 2005). Canonical AKAPs are charac-

terized by the specific amphipathic helix of 14–18 aa that bind

PKA subunits (McConnachie et al., 2006). Although p75NTR



Figure 7. p75NTR-Deficient WAT Transplantation Reduces Body Weight and Insulin Resistance

(A) Schematic of fat transplantation for WT mice. Epididymal fat from p75NTR�/�, WT, and no fat (sham) was transplanted in WT mice. All animals after surgery

were fed a HFD.

(B) Body weight of WTmice transplanted with p75NTR�/� fat (n = 9), WT fat (n = 9), and sham (n = 5) (WT/WT versus p75NTR�/�/WT). *p < 0.05; **p < 0.01, by

two-way ANOVA.

(C) Glucose (left) and insulin tolerance (right) tests in WT-transplanted mice after 8 weeks on a HFD (p75NTR�/�/WT versusWT/WT). **p < 0.01; ***p < 0.001,

by two-way ANOVA (n = 4).

(D) Schematic of fat transplantation. Epididymal fat from p75NTR�/�, WT, and no fat (sham) was transplanted in p75NTR�/�mice. All animals after surgery were fed

a HFD.

(E) Body weight of WT and p75NTR�/� mice transplanted with p75NTR�/� (n = 9) or WT fat (n = 9) and sham-operated (n = 4) (WT sham versus WT/ p75NTR�/�).
**p < 0.01; ***p < 0.001, two-way ANOVA.

(F) Glucose (left) and insulin tolerance (right) tests in recipient mice after 10 weeks of a HFD (WT sham versusWT/ p75NTR�/�). *p < 0.05; **p < 0.01; ***p < 0.001,

two-way ANOVA. n = 4 mice per group.

Data are shown as means ± SEM.
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does not contain the AKAP amphipathic helix, p75NTR might

function as a non-conventional AKAP-regulating PKA signal by

directly binding both PKA subunits and PDEs. Moreover, given

that regulation of PKA is critical in metabolism and neuronal

functions, p75NTR might regulate cAMP/PKA signaling in neu-

ronal cells (Zhong et al., 2009). Structural biology studies are

needed to understand the PKA holoenzymes and macromolec-

ular assemblies that regulate cAMP/PKA signaling (Kim et al.,

2007; Zhang et al., 2012). These studieswill determine the contri-

bution of a potential PDE4A-p75NTR-PKA macromolecular com-

plex in cAMP regulation and will characterize the properties of

p75NTR as a ‘‘non-conventional’’ AKAP in peripheral tissues

and the brain.

p75NTR�/� mice were protected against HFD-induced insulin

resistance through significantly enhanced insulin sensitivity in

skeletal muscle, hepatic, and adipose tissue. Since p75NTR�/�

mice remain lean on HFD, their resistance to type 2 diabetes

could be a secondary effect to reduced body weight. Increased

insulin sensitivity in p75NTR�/�mice on normal chow (Baeza-Raja

et al., 2012) might also contribute to reduced insulin resistance

upon HFD. p75AKO mice and p75NTR�/� / WT mice showed

increased systemic insulin sensitivity after HFD, emphasizing
the primacy of WAT in systemic insulin regulation and its

communication with other key metabolic organs to enhance

insulin sensitivity. In this regard, p75NTR�/� mice showed sub-

stantial increases in circulating levels of adiponectin, an adipo-

cyte-derived hormone that reduces insulin resistance and liver

steatosis by increasing fat oxidation via the AMP-activated pro-

tein kinase pathway (Fruebis et al., 2001; Xu et al., 2003a).

Increased lipolysis induces fatty acid oxidation. Thus, potential

increases in oxidation could also be interpreted as conse-

quences of increased lipolysis. For example, reciprocal regula-

tion of lipolysis and fat oxidation associated with crosstalk

between the cAMP/PKA pathway and Sirt-1 regulates fatty

acid oxidation (Gerhart-Hines et al., 2011). Our study shows

that p75NTR does not regulate adipocyte differentiation, which

supports prior studies showing that defects in lipolysis do

not affect adipocyte differentiation. For example, similar to

p75NTR�/� mice, adipose-specific phospholipase A2 (AdPLA)

knockout adipocytes showed normal intracellular lipid accumu-

lation and significantly increased lipolysis (Jaworski et al., 2009).

Regulation of lipolysis without effects in adipocyte differentiation

suggests that lipolysis is a primary effect of p75NTR. p75NTR�/�

mice show increased lipolytic rates without increasing serum
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fatty acids, suggesting that increased fatty acid oxidation

protects p75NTR�/� mice from increased lipolysis. Indeed,

adipocytes can increase FFA use and energy expenditure

without increasing serum fatty acid levels (Ahmadian et al.,

2009). Thus, weight reduction and increased lipid oxidation

might be due, in part, to increased synthesis of adiponectin or

other adipokines or metabolites derived from WAT. While

glucose tolerance significantly improved in p75AKO and

p75NTR�/� / WT mice 8 weeks after HFD, it was reduced

compared to p75NTR�/� mice tested 20 weeks after HFD. These

differencesmay be due to effects of p75NTR expression in tissues

other than adipose tissue or to different time points used to mea-

sure glucose tolerance.

Our study shows increased P-HSL in WAT isolated from

p75NTR�/� (Figure 3D) and p75AKO mice (Figure 6E), and in

p75NTR�/� MEF-derived adipocytes cultured in vitro (Fig-

ure S5G), indicating that p75NTR loss similarly increases P-HSL

in WAT and MEF-derived adipocytes. As expected, the relative

fold changes are different between tissue isolated from mice

(Figure 3D) and cultured cells (Figure S5G). The �1.8-fold and

�2.3-fold increases in Hsl RNA in p75NTR�/� WAT (Figure S5H)

and p75AKO mice (Figure 6D), respectively, did not change total

HSL protein. These results further suggest that p75NTR contrib-

utes to PKA-mediated phosphorylation of HSL (Figures 3D

and 6E) and are consistent with prior studies showing that HSL

is primarily regulated post-translationally (Kraemer and Shen,

2002). We also found�7-fold and �2.5-fold increases in P-HSL

in WAT isolated from p75AKO and control Adipocyte-Cre mice,

respectively. Since phosphorylation of HSL in vivo depends

on fasting conditions (Kraemer and Shen, 2002), variability in

P-HSL within animals may be due to their responses to fasting.

Regardless of the expected variability of signal transduction

in vivo, the increase in P-HSL in p75AKO mice supports the

data obtained in vivo in p75NTR�/� mice and in vitro in

p75NTR�/� MEF-derived adipocytes showing that p75NTR deple-

tion in fat increases HSL phosphorylation. We also evaluated

PKA-mediated phosphorylation of perilipin by pulling down peril-

ipin and blotting with P-PKA (Choi et al., 2010; Marcinkiewicz

et al., 2006). Our study tested phosphorylation of all six potential

PKA phosphorylation sites on perilipin (Greenberg et al., 1993;

Zhang et al., 2003). Future studies will map the potential specific

phosphorylation sites of perilipin that are regulated by p75NTR.

While p75NTR is expressed in all tissues involved in metabolic

regulation, our genetic and transplantation studies support that

WAT is the primary site of action for p75NTR. Similar to

p75NTR�/� mice, specifically deleting p75NTR from adipocytes

also protected against HFD-induced obesity, while specifically

deleting it from muscle did not. Furthermore, primary cultures

of p75NTR�/� adipocytes had dramatically increased lipolysis,

fat oxidation, and thermogenesis. Moreover, p75NTR�/� / WT

mice were protected from increased body weight after a HFD.

Although these studies cannot exclude the potential effect of

secreted factors by WAT, they strongly support the finding that

deleting p75NTR from adipocytes has beneficial metabolic ef-

fects. p75NTR was upregulated in WAT after exposure to a

HFD. Although transcription factors, such as CLOCK/BMAL,

regulate p75NTR expression (Baeza-Raja et al., 2013), the tran-

scriptional mechanisms that control its upregulation after injury
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or disease remain unknown. Thus, proinflammatory signals

might increase p75NTR levels in WAT upon HFD. These results

suggest that adipose tissue is a primary site for p75NTR to func-

tionally regulate body weight, insulin resistance, lipolysis, and

energy expenditure. Future studies will explore the potential

contribution of p75NTR expression in other tissues, such as the

nervous system, liver, skeletal muscle, macrophages, and BAT

to its metabolic functions.

Our data show that HFD increases p75NTR expression. In

accordance with our prior work (Sachs et al., 2007), cAMP/

PKA signaling is inhibited in p75NTR-expressing cells. Several

signaling pathways are activated after ligands bind to p75NTR;

however, p75NTR also contributes to many signaling pathways

and biological functions independent of ligands (Barker, 2004;

Teng and Hempstead, 2004; Zampieri and Chao, 2006). For

example, p75NTR can serve as a co-receptor for receptors other

than neurotrophins, such as the Nogo receptor and ephrin-As

(Domeniconi et al., 2005; Lim et al., 2008; Wong et al., 2002).

p75NTR can also induce signaling independent of neurotrophins

and/or function as a co-receptor. Prior studies suggested that

p75NTR may signal in a neurotrophin-independent manner in

neuronal cells to induce apoptosis (Majdan et al., 1997; Rabiza-

deh et al., 1993) and activate PI3 kinase (Roux et al., 2001), RhoA

(Yamashita et al., 1999), PDE4A (Sachs et al., 2007), hypoxia

inducible factor (HIF)-1a (Le Moan et al., 2011), and transforming

growth factor (TGF)-b (Schachtrup et al., 2015). In these studies,

expressing p75ICD alone could exert a signaling event and

biological effect without a neurotrophin ligand. Moreover, cross-

linking of p75NTR dimers constitutively activates several path-

ways independent of ligands (Vilar et al., 2009). Since p75NTR

is not constitutively expressed but is upregulated upon a HFD,

its expression could trigger activation of a signaling pathway.

Since tumor necrosis factor (TNF)-a and interleukin (IL)-1b

induce p75NTR expression, increased pro-inflammatory activity

upon HFD might augment p75NTR levels (Choi and Friedman,

2009). There are several examples of well-established ligand-in-

dependent signaling pathways in other receptor systems. For

example, steroid hormone receptors (Power et al., 1991), scav-

enger receptors (Li et al., 2005), viral G-protein-coupled recep-

tors (Vischer et al., 2006), androgen receptors (Culig, 2004),

and B cell receptors (Monroe, 2004) all signal in a ligand-inde-

pendent manner. Future studies will address the potential

endogenous mechanisms that increase expression of p75NTR

upon HFD.

In prior studies, p75NTR�/� mice have shown many physiolog-

ical phenotypes, including deficits in sensory nerve development

(Lee et al., 1994), neurogenesis (Young et al., 2007; Zuccaro

et al., 2014), and insulin resistance (Baeza-Raja et al., 2012). In

animal models of disease, p75NTR�/� mice have also shown

many pathological phenotypes, such as deficits in oligodendro-

cyte apoptosis (Beattie et al., 2002), liver regeneration (Passino

et al., 2007), retinal hypoxia (Le Moan et al., 2011), and astrocyte

functions (Schachtrup et al., 2015). Our study identified a funda-

mental role for p75NTR in metabolism, given the dramatic resis-

tance of p75NTR�/� mice to diet-induced obesity. Proteins such

as p75NTR, which are expressed in several tissues and control

multiple signaling pathways, commonly have pleiotropic biolog-

ical functions in vivo. For example, many phenotypes have been
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seen in the brain and peripheral tissues of mice depleted of tran-

scription factors such as nuclear factor kB (NF-kB) and Sirt-1, or

scaffold proteins such as b-arrestin. We have shown that

p75NTR�/�mice have reducedHIF-1a and are resistant to hypox-

ia (Le Moan et al., 2011). Indeed, fat-specific depletion of HIF-1a

improves insulin sensitivity and decreases adiposity in HFD-fed

mice (Jiang et al., 2011). Since p75NTR�/� mice have reduced

HIF-1a only after exposure to hypoxic conditions, local tissue

hypoxia in fat might decrease HIF-1a in p75NTR�/� fat after

HFD. This mechanism would support our model, since depletion

of either HIF-1a or p75NTR shows similar phenotypes upon diet-

induced obesity. We have also shown that p75NTR�/� mice had

no significant differences in circadian rhythms in vivo (Baeza-

Raja et al., 2013), suggesting that circadian regulation is unlikely

to affect the metabolic phenotype of the p75NTR�/� mice. The

dramatic biological effect of p75NTR in obesity suggests that

metabolic regulation could be one of the most critical in vivo

functions for p75NTR. Further, p75NTR�/� mice on an HFD could

be an experimental model for studying mechanisms of obesity

and energy balance.

In summary, this study demonstrates that the obesity-depen-

dent induction of p75NTR in WAT represses lipolysis and energy

expenditure by directly binding and regulating the PKA holoen-

zyme dissociation, thus majorly contributing to the generation

of obesity. By developing agents that target the p75NTR ICD in

the periphery, we may discover attractive therapeutic strategies

to increase energy expenditure and prevent obesity, liver steato-

sis, and diabetes.

EXPERIMENTAL PROCEDURES

Animals

WT, p75NTR�/� (Lee et al., 1992), adipocyte-cre (aP2-cre) (He et al., 2003),

and MCK-cre (Br€uning et al., 1998) mice were in a C57BL/6J background (The

Jackson Laboratory). Heterozygous p75NTR+/� mice were crossed to obtain

p75NTR�/�, p75NTR+/�, and p75NTR+/+ littermates. p75NTRflox/flox (p75F/F) (Bogen-

mann et al., 2011) mice in the C57BL/6J backgroundwere also used. Crossings

between p75F/F and Adipocyte-cre or MCK-cre were performed to generate

p75AKO (AP2-cre::p75NTRflox/flox) or p75SKMKO (MCK-cre::p75NTRflox/flox) mice.

Male mice 9–25 weeks old were used. Mice were housed under a 12 hr:12 hr

light:dark cycle, fed a standard chow or a HFD (60% calories from fat,

D12492,ResearchDiets), andhadaccess to foodandwater ad libitum.All animal

experiments were performed under the guidelines set by the Institutional Animal

Care andUseCommittee of the University of California, San Francisco, and Uni-

versity of California, San Diego, and are in accordance with the NIH.

Metabolic Cages

The Comprehensive Lab Animal Monitoring Systems (Columbus Instruments)

was used to measure food intake, movement, volume of carbon dioxide

produced (VCO2), volume of oxygen consumed (VO2), respiration rate

(RER = VCO2/VO2), and caloric output [(3.815 + 1.232 3 RER) 3 VO2] over

5 consecutive days. Mice were housed in individual cages for 5 days and al-

lowed to acclimate in the recording metabolic chambers for 24 hr before the

start of measurements to minimize stress. Mouse weights and body composi-

tion were determined before the monitoring period. Body composition was

determined by quantitative magnetic resonance on the EchoMRI 3-in-1

body composition analyzer (EchoMRI). Fat and lean mass were determined

by the system software. Data were normalized to body weights, except VO2

and VCO2, which were normalized to lean mass. Fat oxidation was calculated

using the formula [(1.695 3 VO2) � (1.701 3 VCO2)] 3 9. Values were normal-

ized by lean mass. Measurements of energy intake and energy expenditure

were averaged over four light and dark periods.
Co-immunoprecipitation

Co-immunoprecipitation was performed as described previously (Le Moan

et al., 2011). Cell lysates were prepared in 1% NP-40, 200 mM NaCl, 1 mM

EDTA, and 20 mM Tris-HCl (pH 8.0). Rabbit anti-p75NTR antibody 9992 (a

kind gift from Moses Chao), rabbit anti-PKACa (Cell Signaling), and rabbit

anti-perilipin (Cell Signaling) were used for IP, and immunoblots were per-

formed with anti-PKACa, anti-PKARIIa, anti-PKARIIb, anti-PDE4A, anti-phos-

pho PKA substrate, and anti-p75NTR. Additionally, rabbit anti-HA (hemaggluti-

nin) and mouse anti-Myc were used for IP, and immunoblots were performed

with anti-GFP, anti-HA, and anti-Myc.

cAMP, Active PKA, Adiponectin, Triglycerides, and Cholesterol

cAMP (Assay Designs) and active PKA (Enzo Life Sciences) were measured

following manufacturer’s instructions. Forskolin (10 mM; Sigma) was added

for 1 hr. Adiponectin in serumwasmeasured by ELISA (B-Bridge International),

according to manufacturer’s instructions. Liver triglycerides (Abcam) were

measured following manufacturer’s instructions. Total blood cholesterol was

measured using PTS Panels test strips (Polymer Technology Systems) on

blood samples collected from animals after fasting.

Statistical Analysis

Statistical significance was calculated with GraphPad Prism (GraphPad Prism

Software) by an unpaired two-sided Student’s t test to analyze significance be-

tween two experimental groups or by non-parametric two-sided Mann-Whit-

ney test, Tukey’s multiple-comparisons test, one-way ANOVA, or two-way

ANOVA for multiple comparisons followed by a Bonferroni’s post-test. Data

are shown as means ± SEM.
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