23 research outputs found

    Genomic Signatures After Five Generations of Intensive Selective Breeding: Runs of Homozygosity and Genetic Diversity in Representative Domestic and Wild Populations of Turbot (Scophthalmus maximus)

    Get PDF
    Massive genotyping of single nucleotide polymorphisms (SNP) has opened opportunities for analyzing the way in which selection shapes genomes. Artificial or natural selection usually leaves genomic signatures associated with selective sweeps around the responsible locus. Strong selective sweeps are most often identified either by lower genetic diversity than the genomic average and/or islands of runs of homozygosity (ROHi). Here, we conducted an analysis of selective sweeps in turbot (Scophthalmus maximus) using two SNP datasets from a Northeastern Atlantic population (36 individuals) and a domestic broodstock (46 individuals). Twenty-six families (∼ 40 offspring per family) from this broodstock and three SNP datasets applying differing filtering criteria were used to adjust ROH calling parameters. The best-fitted genomic inbreeding estimate (FROH) was obtained by the sum of ROH longer than 1 Mb, called using a 21,615 SNP panel, a sliding window of 37 SNPs and one heterozygous SNP per window allowed. These parameters were used to obtain the ROHi distribution in the domestic and wild populations (49 and 0 ROHi, respectively). Regions with higher and lower genetic diversity within each population were obtained using sliding windows of 37 SNPs. Furthermore, those regions were mapped in the turbot genome against previously reported genetic markers associated with QTL (Quantitative Trait Loci) and outlier loci for domestic or natural selection to identify putative selective sweeps. Out of the 319 and 278 windows surpassing the suggestive pooled heterozygosity thresholds (ZHp) in the wild and domestic population, respectively, 78 and 54 were retained under more restrictive ZHp criteria. A total of 116 suggestive windows (representing 19 genomic regions) were linked to either QTL for production traits, or outliers for divergent or balancing selection. Twenty-four of them (representing 3 genomic regions) were retained under stricter ZHp thresholds. Eleven QTL/outlier markers were exclusively found in suggestive regions of the domestic broodstock, 7 in the wild population and one in both populations; one (broodstock) and two (wild) of those were found in significant regions retained under more restrictive ZHp criteria in the broodstock and the wild population, respectively. Genome mining and functional enrichment within regions associated with selective sweeps disclosed relevant genes and pathways related to aquaculture target traits, including growth and immune-related pathways, metabolism and response to hypoxia, which showcases how this genome atlas of genetic diversity can be a valuable resource to look for candidate genes related to natural or artificial selection in turbot populationsThis study has been supported by the FISHBOOST project (ref. 613611) from the European Community’s Seventh Framework Programme (FP7/2007-2013), European Regional Development Fund (Interreg Va, project “MarGen”), Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia local government (ref. ED431C 2018/28), and the Strategic Researcher Cluster BioReDes funded by the Regional Government Xunta de Galicia (Spain) (ref. ED431E 2018/09). Computational support for bioinformatic analysis was provided by Centro de Supercomputación de Galicia (CESGA). AC was supported by a predoctoral research fellowship from Xunta de Galicia local government (Spain) (ref. ED481A-2017/091). OA was supported by a predoctoral research fellowship from BioReDes, funded by Xunta de Galicia (Spain) (ref. 2018-PG099)S

    p75 neurotrophin receptor regulates energy balance in obesity

    Get PDF
    Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome

    Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (<i>Pleuronectes platessa</i>)

    No full text
    Changing environmental conditions can lead to population diversification through differential selection on standing genetic variation. Structural variant (SV) polymorphisms provide examples of ancient alleles that in time become associated with novel environmental gradients. The European plaice (Pleuronectes platessa) is a marine flatfish showing large allele-frequency differences at two putative SVs associated with environmental variation. In this study, we explored the contribution of these SVs to population structure across the North East Atlantic. We compared genome-wide population structure using sets of RAD-sequencing SNPs with the spatial structure of the SVs. We found that in contrast to the rest of the genome, the SVs were only weakly associated with an isolation-by-distance pattern. Indeed, both SVs showed important variation in haplogroup frequencies, with the same haplogroup increasing both along the salinity gradient of the Baltic Sea, and found in high frequency in the northern-range margin of the Atlantic. Phylogenetic analyses suggested that the SV alleles are much older than the age of the Baltic Sea itself. These results suggest that the SVs are older than the age of the environmental gradients with which they currently co-vary. Altogether, our results suggest that the plaice SVs were shaped by evolutionary processes occurring at two time frames, firstly following their origin, ancient spread and maintenance in the ancestral populations, and secondly related to their current association with more recently formed environmental gradients such as those found in the North Sea–Baltic Sea transition zone

    LeMoan_4_pops_all_samples_anchovy_working_dataset_MAC2_1SNPperRAD

    No full text
    The global SNP dataset used in NewHybrids analysis and in the PCA analysis containing hybrids (Figure 1A). The VCF file contains 5638 SNPs typed in 128 individuals. The minor allele count (MAC) threshold is 2 and only one SNP per RAD was kept

    LeMoan_Atlantic_anchovy_working_dataset_MAC1_1SNPperRAD

    No full text
    The Atlantic subdataset containing 5260 SNPs typed 41 non-admixed individuals that were classified either as pure marine (30 PM) or pure coastal (11 PC) ecotypes using a 95% assignment probability threshold in NewHybrids. The minor allele count (MAC) threshold is 1 and only one SNP per RAD was kept
    corecore