134 research outputs found

    Transcriptomic Analysis of Host Immune and Cell Death Responses Associated with the Influenza A Virus PB1-F2 Protein

    Get PDF
    Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-Ξ³ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB1-F2 mediates virulence

    Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility

    Get PDF
    Rotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model. Expression of the innate immune receptor for viral dsRNA, Toll-like receptor (Tlr) 3 was low in the epithelium of suckling mice but strongly increased during the postnatal period inversely correlating with rotavirus susceptibility, viral shedding and histological damage. Adult mice deficient in Tlr3 (Tlr3βˆ’/βˆ’) or the adaptor molecule Trif (TrifLps2/Lps2) exerted significantly higher viral shedding and decreased epithelial expression of proinflammatory and antiviral genes as compared to wild-type animals. In contrast, neonatal mice deficient in Tlr3 or Trif did not display impaired cell stimulation or enhanced rotavirus susceptibility. Using chimeric mice, a major contribution of the non-hematopoietic cell compartment in the Trif-mediated antiviral host response was detected in adult animals. Finally, a significant age-dependent increase of TLR3 expression was also detected in human small intestinal biopsies. Thus, upregulation of epithelial TLR3 expression during infancy might contribute to the age-dependent susceptibility to rotavirus infection

    Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks

    Get PDF
    Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens

    The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection

    Get PDF
    Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNΞ±-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-Ξ³. In addition, we blocked Notch signaling by using Ξ³-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-Ξ³ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-Ξ³ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection

    Pathogenic Mouse Hepatitis Virus or Poly(I:C) Induce IL-33 in Hepatocytes in Murine Models of Hepatitis.

    Get PDF
    International audienceThe IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33

    Inflammasome-dependent Pyroptosis and IL-18 Protect against Burkholderia pseudomallei Lung Infection while IL-1Ξ² Is Deleterious

    Get PDF
    Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and other cell types and causes melioidosis. The interaction of B. pseudomallei with the inflammasome and the role of pyroptosis, IL-1Ξ², and IL-18 during melioidosis have not been investigated in detail. Here we show that the Nod-like receptors (NLR) NLRP3 and NLRC4 differentially regulate pyroptosis and production of IL-1Ξ² and IL-18 and are critical for inflammasome-mediated resistance to melioidosis. In vitro production of IL-1Ξ² by macrophages or dendritic cells infected with B. pseudomallei was dependent on NLRC4 and NLRP3 while pyroptosis required only NLRC4. Mice deficient in the inflammasome components ASC, caspase-1, NLRC4, and NLRP3, were dramatically more susceptible to lung infection with B. pseudomallei than WT mice. The heightened susceptibility of Nlrp3-/- mice was due to decreased production of IL-18 and IL-1Ξ². In contrast, Nlrc4-/- mice produced IL-1Ξ² and IL-18 in higher amount than WT mice and their high susceptibility was due to decreased pyroptosis and consequently higher bacterial burdens. Analyses of IL-18-deficient mice revealed that IL-18 is essential for survival primarily because of its ability to induce IFNΞ³ production. In contrast, studies using IL-1RI-deficient mice or WT mice treated with either IL-1Ξ² or IL-1 receptor agonist revealed that IL-1Ξ² has deleterious effects during melioidosis. The detrimental role of IL-1Ξ² appeared to be due, in part, to excessive recruitment of neutrophils to the lung. Because neutrophils do not express NLRC4 and therefore fail to undergo pyroptosis, they may be permissive to B. pseudomallei intracellular growth. Administration of neutrophil-recruitment inhibitors IL-1ra or the CXCR2 neutrophil chemokine receptor antagonist antileukinate protected Nlrc4-/- mice from lethal doses of B. pseudomallei and decreased systemic dissemination of bacteria. Thus, the NLRP3 and NLRC4 inflammasomes have non-redundant protective roles in melioidosis: NLRC4 regulates pyroptosis while NLRP3 regulates production of protective IL-18 and deleterious IL-1Ξ²

    Isolation of Bacterial Ribosomes with Monolith Chromatography

    Get PDF
    We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology

    Platelet-Activating Factor Receptor Plays a Role in Lung Injury and Death Caused by Influenza A in Mice

    Get PDF
    Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1+ cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans

    Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular magnetic resonance imaging in patients with atrial fibrillation

    Get PDF
    Background: Four-dimensional (4D) flow cardiovascular magnetic resonance imaging (MRI) is an emerging technique used for intra-cardiac blood flow assessment. The role of 4D flow cardiovascular MRI in the assessment of trans-valvular flow in patients with atrial fibrillation (AF) has not previously been assessed. The purpose of this study was to assess the feasibility, image quality, and internal validity of 4D flow cardiovascular MRI in the quantification of trans-valvular flow in patients with AF. Methods: Patients with AF and healthy controls in sinus rhythm underwent cardiovascular MRI, including 4D flow studies. Quality assurance checks were done on the raw data and streamlines. Consistency was investigated by trans-valvular flow assessment between the mitral valve (MV) and the aortic valve (AV). Results: Eight patients with AF (88% male, mean age 62Β±13 years, mean heart rate (HR) 83Β±16 beats per minute (bpm)) were included and compared with ten healthy controls (70% male, mean age 41Β±20 years, mean HR 68.5Β±9 bpm). All scans were of either good quality with minimal blurring artefacts, or excellent quality with no artefacts. No significant bias was observed between the AV and MV stroke volumes in either healthy controls (–4.8, 95% CI –15.64 to 6.04; P=0.34) or in patients with AF (1.64, 95% CI –4.7 to 7.94; P=0.56). A significant correlation was demonstrated between MV and AV stroke volumes in both healthy controls (r=0.87, 95% CI 0.52 to 0.97; P=0.001) and in AF patients (r=0.82, 95% CI 0.26 to 0.97; P=0.01). Conclusions: In patients with AF, 4D flow cardiovascular MRI is feasible with good image quality, allowing for quantification of trans-valvular flow

    MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness

    Get PDF
    Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness
    • …
    corecore