90,881 research outputs found

    Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations

    Full text link
    We investigate mathematically a nonlinear approximation type approach recently introduced in [A. Ammar et al., J. Non-Newtonian Fluid Mech., 2006] to solve high dimensional partial differential equations. We show the link between the approach and the greedy algorithms of approximation theory studied e.g. in [R.A. DeVore and V.N. Temlyakov, Adv. Comput. Math., 1996]. On the prototypical case of the Poisson equation, we show that a variational version of the approach, based on minimization of energies, converges. On the other hand, we show various theoretical and numerical difficulties arising with the non variational version of the approach, consisting of simply solving the first order optimality equations of the problem. Several unsolved issues are indicated in order to motivate further research

    A mathematical formalization of the parallel replica dynamics

    Full text link
    The purpose of this article is to lay the mathematical foundations of a well known numerical approach in computational statistical physics and molecular dynamics, namely the parallel replica dynamics introduced by A.F. Voter. The aim of the approach is to efficiently generate a coarse-grained evolution (in terms of state-to-state dynamics) of a given stochastic process. The approach formally consists in concurrently considering several realizations of the stochastic process, and tracking among the realizations that which, the soonest, undergoes an important transition. Using specific properties of the dynamics generated, a computational speed-up is obtained. In the best cases, this speed-up approaches the number of realizations considered. By drawing connections with the theory of Markov processes and, in particular, exploiting the notion of quasi-stationary distribution, we provide a mathematical setting appropriate for assessing theoretically the performance of the approach, and possibly improving it

    Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel

    Full text link
    The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.Comment: 7 pages, 8 figure

    On the filamentary environment of galaxies

    Full text link
    The correlation between the large-scale distribution of galaxies and their spectroscopic properties at z=1.5 is investigated using the Horizon MareNostrum cosmological run. We have extracted a large sample of 10^5 galaxies from this large hydrodynamical simulation featuring standard galaxy formation physics. Spectral synthesis is applied to these single stellar populations to generate spectra and colours for all galaxies. We use the skeleton as a tracer of the cosmic web and study how our galaxy catalogue depends on the distance to the skeleton. We show that galaxies closer to the skeleton tend to be redder, but that the effect is mostly due to the proximity of large haloes at the nodes of the skeleton, rather than the filaments themselves. This effects translate into a bimodality in the colour distribution of our sample. The origin of this bimodality is investigated and seems to follow from the ram pressure stripping of satellite galaxies within the more massive clusters of the simulation. The virtual catalogues (spectroscopical properties of the MareNostrum galaxies at various redshifts) are available online at http://www.iap.fr/users/pichon/MareNostrum/cataloguesComment: 18 pages, 27 figures, accepted for publication in MNRA

    Initial POLAR MFE observation of substorm signatures in the polar magnetosphere

    Get PDF
    This paper studies substorm influences in the polar magnetosphere using data from the POLAR magnetic field experiment (MFE). The POLAR spacecraft remains in the high altitude polar magnetosphere for extended periods around apogee. There it can stay at nearly constant altitude through all phases of a substorm, which was not possible on previous missions. We report such an event on March 28, 1996. Ground magnetometers monitored substorm activity, while the POLAR spacecraft, directly over the pole at (−0.8, −0.6, 8.5) RE in GSM coordinates, observed a corresponding perturbation in the total magnetic field strength. The total magnetic field first increased, then recovered toward quiet levels, consistent with erosion of magnetic flux from the dayside magnetosphere, followed by transport of that flux to the magnetotail, and eventual onset of tail reconnection and the return of that magnetic flux to the dayside magnetosphere

    Bose-enhanced chemistry: Amplification of selectivity in the dissociation of molecular Bose-Einstein condensates

    Full text link
    We study the photodissociation chemistry of a quantum degenerate gas of bosonic triatomic ABCABC molecules, assuming two open rearrangement channels (AB+CAB+C or A+BCA+BC). The equations of motion are equivalent to those of a parametric multimode laser, resulting in an exponential buildup of macroscopic mode populations. By exponentially amplifying a small differential in the single-particle rate-coefficients, Bose stimulation leads to a nearly complete selectivity of the collective NN-body process, indicating a novel type of ultra-selective quantum degenerate chemistry.Comment: 5 pages, 3 figure

    An HI Imaging Survey of Asymptotic Giant Branch Stars

    Get PDF
    We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes of six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, R Peg, displays a peculiar "horseshoe-shaped" HI morphology with emission extended on scales up to ~1.7 pc; in this case, the circumstellar debris may have been distorted by transverse flows in the local interstellar medium. We briefly discuss our new results in the context of the entire sample of evolved stars that has been imaged in HI to date.Comment: Accepted to AJ. A version with full resolution figures is available at http://www.haystack.mit.edu/hay/staff/lmatthew/matthews_HI_survey.pd

    Quantifying the Effect of Non-Larmor Motion of Electrons on the Pressure Tensor

    Get PDF
    In space plasma, various effects of magnetic reconnection and turbulence cause the electron motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the electron velocity distribution function and lead to the appearance of the "non-gyrotropic" elements in the pressure tensor. Quantification of this effect has important applications in space and laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic reconnection in space observations. Three different measures of agyrotropy of pressure tensor have previously been proposed, namely, AeA\varnothing_e, DngD_{ng} and QQ. The multitude of contradictory measures has caused confusion within the community. We revisit the problem by considering the basic properties an agyrotropy measure should have. We show that AeA\varnothing_e, DngD_{ng} and QQ are all defined based on the sum of the principle minors (i.e. the rotation invariant I2I_2) of the pressure tensor. We discuss in detail the problems of I2I_2-based measures and explain why they may produce ambiguous and biased results. We introduce a new measure AGAG constructed based on the determinant of the pressure tensor (i.e. the rotation invariant I3I_3) which does not suffer from the problems of I2I_2-based measures. We compare AGAG with other measures in 2 and 3-dimension particle-in-cell magnetic reconnection simulations, and show that AGAG can effectively trace the EDR of reconnection in both Harris and force-free current sheets. On the other hand, AeA\varnothing_e does not show prominent peaks in the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that AeA\varnothing_e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying magnetic reconnection in more general situations other than Harris sheet reconnection.Comment: accepted by Phys. of Plasm

    A continuum-microscopic method based on IRBFs and control volume scheme for viscoelastic fluid flows

    Get PDF
    A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is demonstrated with the solution of the start-up Couette flow of the Hookean and FENE dumbbell model fluids
    corecore