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Abstract: A numerical computation of continuum-microscopic modehigco-
elastic flows based on the Integrated Radial Basis FundiftiBK) Control Volume
and the Stochastic Simulation Techniques (SST) is reparntgtiis paper. The
macroscopic flow equations are closed by a stochastic equiati the extra stress
at the microscopic level. The former are discretised by aRBF-CV method
while the latter is integrated with Euler explicit or PradicCorrector schemes.
Modelling is very efficient as it is based on Cartesian gridhilevthe integrated
RBF approach enhances both the stability of the procedure¢henaccuracy of the
solution. The proposed method is demonstrated with theisolof the start-up
Couette flow of the Hookean and FENE dumbbell model fluids.

Keywords: Stochastic simulation techniques, Brownian configurafiells, In-
tegrated radial basis functions, Control volume, Viscst@dluid flow, Continuum-
microscopic method.

1 Introduction

For the last several decades, multi-scale problems haweetat significant atten-
tion across several fields, including mathematics, engimgechemistry, materials
science, biology and fluid dynamics [Weinan and EngquisO80 A number

of analytic and numerical methods for multi-scale probldrage been developed
[Kevorkian and Cole (1996); Maslov and Fedoriuk (1981); gingt, Lotstedt, and
Runborg (2000); Hou (2005); Chu, Efendiev, Ginting, and K2Q08); Hajibeyqi,

Gonfigli, Hesse, and Jenny (2008)]. A simple brute forcerdisgation, that can
capture small scale features, will result in prohibitivelypensive numerical pro-
cedures. Thus it is necessary to devise multi-scale stestaghere small scale
features can be captured effectively and efficiently widmnoverall practically re-
alisable macroscopic procedure. In such multi-scaleegjies, different physical
laws are often required to describe the system at differeales. For example, at
the macro-scale, complex fluids are accurately describateoyelocity, pressure,
and temperature fields, which satisfy the physical consierva@quations while on
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the micro-scale, it is necessary to use kinetic theory t@agebre detailed descrip-
tion in terms of the probability distribution function of pigles [Bird, Armstrong,

and Hassager (1987)]. Thus, rheological properties at therescopic level can
be solved by a multi-scale strategy consisting in searcfonghe information on

the microstructures of the fluids. The information is theadu solve the macro-
scopic governing equations. This continuum-microscoplso known as macro-
micro) multi-scale approach does not require closed formstitutive equations
[Ottinger (1996)]. The approach is an attempt to emulatesitustion in real lig-

uids, where the full information about the stress is comt@diim the configuration of
molecules which results from the micro-scale deformatimtohy. The main idea
of these techniques is that the polymer contribution to thess is directly calcu-
lated from a large ensemble of microscopic configurationkaut having to derive
a closed form constitutive equation, which is a powerfutdea for the modelling

of materials [Engquist, Lotstedt, and Runborg (2000)]. @mdomputational side,
several numerical techniques have been developed for titenaam-microscopic
multi-scale approach [Laso and Ottinger (1993); Hulsem, Mael, and van den
Brule (1997); Somasi and Khomami (2001); Jourdain, Leéeand Bris (2002);
Tran-Canh and Tran-Cong (2002); Keunings (2004); Trarlliphiand Tran-Cong
(2009)].

Recently, a numerical scheme based on the combination ®RBPNs collocation
and SST for the analysis of visco-elastic fluid flows showeidjaificant improve-
ment of the approximation accuracy owing to a reduction i dpproximation
noise caused by differentiation [Tran, An-Vo, Mai-Duy, afnn-Cong (2011)].
Owing to the advantages of a Control Volume technique, dinly the conserva-
tive nature and the ability of handling domains with compeometry, the present
work will present a 1D-IRBF based Control Volume method [NDaly and Tran-
Cong (2010)] incorporating the Brownian Configuration &&(BCF) technique
for a continuum-microstructure model of viscoelastic flowhke present approach
achieves high-order convergence and accuracy.

The paper is organized as follows. Section 2 presents anieveof the governing

equations of non-Newtonian fluid flows for the macroscopigrapch. In section

3, the simulation method of BCF is described for the comjmutadf the polymer

contributed stress. A continuum-microscopic multi-selstem of equations gov-
erning the flow of dumbbell model fluids are introduced in wecd. The numeri-

cal solution of the coupled continuum-microscopic equetiis detailed in section
5 where the BCF and the 1D-IRBFN control volume methods agsgmted. An

algorithm of the present procedure is presented to desttrébdiscretizations of the
continuum and microstructure components as well as thirdantion. Numerical

examples are then discussed in section 6 with a conclusisecition 7.
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2 Governing equations for non-Newtonian fluid flows

Consider the isothermal flow of an incompressible compleixi flthe system of
momentum and mass conservation equations is given by

D
pﬁ(U) = —0Op+0-1, (1)

O.u = 0, )

wherep is the densityp the pressure arisen due to the incompressibility constrain
u the velocity field; andr the extra stress. The extra stress is then further decom-
posed as

T= T5+ Tp, (3)

where1s = 2nsD is the Newtonian solvent contribution to the stregsithe sol-
vent viscosity;D = O.5<Du+ (Du)T) the rate of strain tensor, the polymer-
contributed stress; an@f ()= % (+)+ (u-0)(+) the substantial derivative.

For a given model material, the polymer contribution to ttress () is governed
by specific equations that may lead to a constitutive equatidhe form

DéTtp) = f(1p,0u). (4)

In the macroscopic methods of analysis, the conservatioat@Ems (1) & (2) are
closed by a constitutive equation such as (4). In contrhatciosed form consti-
tutive equation cannot be obtained, the conservation emsafl) and (2) can be
closed by equations governing the evolution of the micrpgcstructures of the
fluid in continuum-microscopic multi-scale approachesywhfch one is described
in the next section.

3 A microscopic stochastic simulation method

We consider dumbbell models at the microscopic level. Micopic models can
be simulated using different approaches. In this work, to¢&Bcheme is used. In
this procedure, an equation at the microscopic level deseiihe evolution of the
microstructures, leading to the computation of the non-tdaian contributionr

to the stress. Each dumbbell consists of two Brownian bedistware connected
together by a spring. The configuration of a dumbbell is cataby described by
the length and orientation of the end-to-end ve&aonnecting the two beads (see
Ottinger (1996) for more details). The evolution®fis modeled using a stochastic
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differential equation as follows.

dR (t,x) = |—u(t,x)-OR(t,x) + Ou (t,x) - R (t,x) — ?F (R (t,x))] dt

+4/ gdz (t), (5)

whereu is the velocity field;{ the friction coefficient between the dumbbell and
the solventkg the Boltzmann constant; the absolute temperatur(t) a standard
multi-dimensional Brownian motion and a Wiener procesgR) is the internal
force exerted by a polymer and depends on the given modelstiémss is computed
via the following classical Kramers’ expression

Tp(X,t) = —Npy (RO F(R)) —npkgTdl, (6)

wheren,, is the density of dumbbelld;the identity tensord the spatial dimension
of the problem; an@®) the tensorial product.

In (5), the termu(t,x) - OR(t,x) accounts for the convection of the configuration
fields by the flow. It can be seen that the existence of thisexiwe term in this
Eulerian framework is completely equivalent to the pagtithcking in the tradi-
tional Lagrangian CONNFFESSIT approach [Hulsen, van Haal,van den Brule
(2997)].

For the Hookean and FENE models, the spring foré@sie respectively given by

Fhooken = HR, 7
HR
(8)

1—|R|?/ (bkgT/H)’

Frene

whereb is a non-dimensional parameter relating to the maximal mpelylength
andH is a spring constant.

4 A continuum-micro multiscale simulation approach

Gathering the partial differential equations (PDEs) (19l é2), stochastic differ-
ential equations (SDESs) (5) and the Kramers’ expressioryiéls a continuum-
microscopic multi-scale system as follows [Ottinger (1996urdain, Leliévre, and
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Bris (2002); Tran-Canh and Tran-Cong (2004)].
p(%Jru-Du)—nAquDp:D-rp, 9
O-u(t,x) =0, (10)

2 KT
dR (t,x) +u-0ORdt = [DuR—zF(R)} dt+2 de (t), (11)
Tp=Np{E[R(t,x) @ F(R(t,x))] —KTdl}. (12)

The corresponding dimensionless forms of the system @)gad (7)-(8) are given
by

Re(%+uﬂu>—(1—s)Au+Dp:D-rp, (13)
0-u(t,x) =0, (14)
1 1
dR (t,x) +u - ORdt = OuRdt — mF(R)dt + \/—Wedz (t), (15)
£
Th= e LE[RELX) @F R (X)) —dl}, (16)
FHookean = R, 1)
R
FrENe = ——7, (18)
1

whereRe = pUL/n, andWe = A4U /L are the Reynolds and Weissenberg num-
bers, respectivelyg = ny/no the ratio of polymer viscosity to the total ong

(No = Ns+ np), with np = npke T Ay being the polymer viscosityl\y = {/4H the
relaxation time of the polymer chains;= \/kT /H the characteristic length scale;
U the characteristic velocity. Other parameters are defindubfore.

OnceR(t,x) is determined by solving (15}, is computed by (16) and introduced
into (13) and (14) as a known quantity for the solutiou@ndp. Thus the iterative
process is initiated by an initial guess of the velocity arebspure fields.

5 Solving the continuum-micro multiscale system with an IRB--control vol-
ume and the Brownian Configuration Field method

In this section, computational techniques are describedhi® numerical solu-
tion of the microscopic equation (i.e. SDE) and the congemasquations (i.e.
PDESs), respectively. For the stochastic process, a variegduction technique is
also overviewed, followed by a presentation of the ovelgtdthm.
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5.1 Numerical solution of the SDEs

In the present work, we use both Predictor-Corrector andigixguler schemes
but only the latter is presented in detail. LRt= R(t;), using a fixed time step
At for the stochastic process (15), the predicted BGR at timet;, 1 is explicitly
determined as follows [Ottinger (1996); Kloeden and PI&i€97)].

1 | At
R|+1 - R| + DU| . R| - U| . DR| - WeF (R|)} At + \/\_/eZ|. (19)

The updated configuration field& 1 are employed to estimate the polymer con-
tribution to the predicted stregsp); , 1, using the Kramers’ expression (16), which
is in turn used to determine the solution of the velocity fildimet; . ; by solving
Egs. (13) and (14). The velocity, velocity gradient and aqunfation gradient at
time t;, 1 are determined with data obtained at titnesing a 1D-IRBFN control
volume method which is presented in section 5.3.

5.2 Control variate method for the dumbbell models

Noise reduction is crucial in the stochastic simulationystems (13)-(15). Differ-
ent variance reduction techniques are detailed in [Gardit@94)]. In this work,
the control variate method is employed for the dumbbell ngdehe method uses
a control variate< R > which is correlated with the random varialiteand can be
calculated by a deterministic method, to produce a bettanator of <R >. Ata
nodal point (centre of each of timecontrol volumes)n dumbbells are assigned and
numbered from = 1...n. Dumbbells having the same index in the whole analysis
domain have the same random number. A detailed implementafithe control
variate method for the numerical calculation of the polymentribution to stress
can be found in, for example, [Bonvin and Picasso (1999)n-Tanh and Tran-
Cong (2004)] and is not repeated here.

5.3 Thelntegral RBFsbased control volume (IRBFCV) method for solving the
PDEs

The incompressibility condition (14) is here enforced \he penalty method as
follows [Laso, Picasso, and Ottinger (1997)].

p:_pe[l'u)

wherepg is a sufficiently large penalty parameter. Eq. (13) is thevriteen as

Re%—kReu-Du—(l—s)Au—peD(D-u)—D-rp:O, (20)
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In order to solve Eq. (20), the problem domain is discretigsithg a set of nodal
points. Each nodg; is surrounded by a control volume denoted\pyintegrating
Egs. (17) over a control volumé, leads to the following equation

/(Reaa—t+Reu Ou—(1— S)Au—peD(D-u)—D-rp>dV:O. 21)

Application of the Gauss divergence theorem to Eq. (21)giel

Re% udV+Re/u OudV — (1— s/Du AdS— pe/( u)fids

—/ Tp-NdS=0. (22)
S

where § is the boundary o¥;; n a unit outward vector normal t§ anddS a
differential element of§. In order to approximate the solution of Eqg. (22), a 1D-
IRBF based control volume scheme is employed.

5.3.1 Review of 1D-IRBF method for spatial discretisation of differential equa-
tions

At a timet, the highest-order derivative of a dependent variaiiet) (the second
order in the case of this work) is decomposed as [Mai-Duy aad-Tong (2001)]

m
[2
o —Z_ 06, (23)

wherem is the number of grid lines parallel to tlyedirection; {w;(t)}, the set
of RBF weights;{Gi[z] (X)}, the set of RBFs. Generally, the multi-quadric RBF
(MQ-RBF) is considered as one of the best RBFs for the appratidon of a func-
tion [Franke (1982)] and given by

G2(x) = ((x—c)2+ad)"?

where{c}", is a set of centres anfi }{", a set of MQ-RBF widths. A set of
collocation points{x; }" ; is taken to be the set of centres, while the RBF width is
chosen as follows

g = [Bd;,

wheref is a factor and}; is the distance from thid' centre to its nearest neighbour.
The corresponding first-order derivative and functionlitsee then determined
through integration as follows.

du(x,t) O 1

Tox — WG +Cu), (24)
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u(x,t) = _iwi (G (¥) +Ca(t)x+Ca(t), (25)

whereGim X)=[ Gi[z] (x)dx, Gi[o] X)=/[ Gim (x)dx andC; andC, are unknown con-
stants of integration at time

Collocating equations (23), (24) and (25) at grid poifxg " , yields the following
set of algebraic equations

2%u(x,t)

02 :ém(x)\Tv(t), (26)
JUXY) =y e
G Ogw(t), 27)
U(x,t) = GO x)w(t), (28)
where
[ G3x) GZx) Gx) 0 0
ga_ | G0 Glie) -~ Gile) 0 0
Gy (m) G5 (Xm) @0m) 0 0
G x) G x Bx) 10
a_ Gll(x) Gy(x) - Gh(x) 1 0 |
| G om) G ) - G () 10
- G[lo] Xq G[ZO] X) e Gﬁ] (x) x 1
Gl _ Ggo] (X2) G[zo] (%) - Gh(p) % 1 |
| G (xm) G () G () Xem 1
V~V(t) - (Wl(t),Wz(t),---,Wm(t),cl(t),CQ(t))T7
(th) - (Ul(X,t),Uz(X,t),---,Um(X,t))T7
dkti(x,t) dur(xt) dua(xt)  dfun, (xt) T
dxk dek 7 odxk 77 dxk ’

whereu; = u(x;,t) withi={1,2,--- ,m}.
The use of integration to construct the RBF approximantsxpeeted to avoid

the deterioration of accuracy caused by differentiatioraifiduy and Tran-Cong
(2001)].
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5.3.2 Theintegrated RBFsbased control volume (IRBFCV) method

The 1D-IRBFs scheme described in section 5.3.1 is intratluc® the control

volume formulation Eq. (22) to approximate the field vargbhs well as their
derivatives. In this work, the problem domain is discretissing a Cartesian grid.
On a grid line, 1D-IRBFs are employed to represent the unknfigld variables

and their derivatives. Control volumes are generated araaiocation points
({x H",) (see Fig.1). In this conservative scheme, the governingtens are

forced to be satisfied locally over control volumes and therdary conditions are
directly imposed on the relevant IRBF approximants. The@dore leads to an
algebraic equation system for unknown nodal values of the ¥i@riable. Owing

to the presence of integration constants in the IRBF basprbgimants, one can
introduce in the algebraic equation system additionalrmfition such as nodal
derivative values (more details can be found in [Mai-Duy anah-Cong (2010)].

Thus, the algebraic equation system (28) can be refornilitete

( ? ) - [ éL” ]\Tv(t) = CW(t). (29)

The conversion of the network-weight space into the physigace is achieved by
inverting (29)

wm:cl<?>, (30)

wheref = LW represents additional informatio@; ! is the conversion matrixG[©
andw are defined as before. By substituting (30) into (26) and, (2'¢)second and
first-order derivatives ofi(x,t) will be expressed in terms of nodal variable values
as follows.

2 ~
9 l;g;((t) — —@ZXU(Xat) + kZXa (31)
QUL) — Dnyi(%,t) + kax,

where %1, and %y, are known vectors of lengtim; andky, andkyy scalars. Apply-
ing (31) at each and every collocation point on the gridliredds
2~ ~ ~
I = Zpi(x,t) + kox,

GUXL) — Daxli(x,t) + Kax,

(32)

where 2, and 214 are known matrices of dimension x m; andkyx andkiy are
known vectors of lengtim. Further details are revealed as numerical examples are
described below.
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5.4 Algorithm of the present procedure

The present multi-scale continuum-microscopic methodream be described in
an overall detailed algorithm as follows.

a. Generate a set of Cartesian grid collocation points améssociated CVs.
Start with an initial guess of the velocity field and molecwanfigurations
for the first iteration together with the given initial andumalary conditions
of the problem. In the present work, the initial velocity fie$ set to zero.
Assignn dumbbells to each collocation point. Initialmolecular configura-
tions are sampled from equilibrium Gaussian distributiOtinger (1996)].
The control variatesEA{i associated with the configuration fielBs are cre-
ated. All dumbbells having the same index constitute a cardiipn. Hence,
there is an ensemble of configuration fieldR; (i = 1...n). Since all the
dumbbells having the same index receive the same randomeranthere
is a strong correlation between dumbbells in a configurat@emputer, at
nodal points;

b. Calculate unknown velocity and pressure fields using RBHCV method
described in section 5.3;

c. Calculate the polymer configuration fields by the methastdeed in sec-
tion 5.1. For each configuration fiel, a corresponding control variate is
determined;

d. Determine the polymer contribution to stragsat nodal points (the centres
of CVs) by taking the ensemble average of the polymer cordigams in
each CV, using Eq. (16);

e. Calculate a convergence measi@M) based on the velocity field, which is
defined by

2

sTayh, <U},j - ﬁl>
STz, <U%,j ) i

whered is the number of dimensiontgl a preset tolerance; ; thei compo-
nent of the velocity at a collocation poiptmthe total number of collocation
points and is the iteration number;

CM = < tal, (33)

f. If steady state or a given time is reached, terminate thelsition. Otherwise
return to step b for the next time level of the simulation s
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6 Numerical examples

The present method is verified with the simulation of thetatprplanar Couette
flows of the Hookean and FENE model fluids. This problem, ddfimeFigure
1, was earlier studied with different methods by [Mochimt983); Laso and
Ottinger (1993); Tran-Canh and Tran-Cong (2002, 2004)n,TAm-Vo, Mai-Duy,
and Tran-Cong (2011)]. For time< 0, the fluid is at rest. At= 0, the lower plate
starts to move with a constant velociy= 1. No-slip condition is assumed at the
wall. For the start-up Couette flows, the governing equat{@3)-(16), are reduced
as follows. Letr,yx = Tyx in this case.

2
ReZL (L) - (-8 Sy = Xy, @
P(ty) = (- P RN+ 5 L9QLY )t v, @)
dQ(LY) = ~grgFoR(Ly) dt+ —aW (D), (26
ety =~ EPEYQLY), @7

whereu is the x-velocity; Ty the shear stresgP, Q) the components of a BCF
procesR(t,y); (V,W) two dimensional Brownian motions of a dumbbell’s config-
uration; andFp, Fo) two components of the ford&(R). Here we will describe the
time and space discretisation of the problem involving Hmskdumbbell model
only and similar description for the FENE dumbbell modeltraightforward.

6.1 The Hookean dumbbell model
For the Hookean model, Egs. (35)-(36) are rewritten asvidlo

Py = (a5 QMY o v, (39)
QLY = ~ZeQty)di+ W (D). (39)

The chosen parameters are Weissenberg nuviitber 0.5; Reynolds numbédre =
0.1 and ratios = 0.9. The equations (34), (38), (39) and (37) are solved through
two steps as described below.

6.1.1 Discretisation of the micro-scale stochastic governing equation

Given that the velocity field is previously determined atdity Eqs (38)-(39) are
discretized using the Euler explicit scheme wittn = 1000 realizations for each
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random process as follows.

o (1o e (9U) a0k avi var 40
1] = -5 )Rt ) Qf +9Vijvot, (40)

i+1

M |

K ot\ N
Q1 = 1—7 Q' +dW*vat, (41)

whereodt = V%; i and j stand for the time and space discretizations respectikely;

(1 < k < n) stands for the realisation of random processes;&l;ﬁi and SWK are
standard norm based random variables.

Itis noted that (i)///i'jrl jare the parameters obtained by the discretisation of macro-

scopic governing equation Eq. (34) at tiie, and collocation pointg; (see sec-
tion 6.1.2); and (ii)Q!‘ are independent of their positigrowing to the geometrical
characteristic of the problem.

The shear stress, is then calculated using the coupling equation Eq. (37) as

el K
(it = oms > PenjQia (42)
1+ ,) Wenkgl | N | |

The shear stress¢syy)i1,j at timet;.1 and collocation pointy; (1 < j <m) are
employed to solve the momentum governing equation (34) saritbed next.

6.1.2 Discretization of the macro-scale governing eguation

Considering Eq. (34) with the following initial and boungaronditions

* |nitial conditions

u(0,0)0 =V =1 and u(0,y)=0 Vy#0.

« Dirichlet boundary conditions
ut,0)=V=1wvt>0; ut,L)=0 Vt>D0.

The spatial domain (& y < 1) is discretised withm nodal points and time domain
(0 <t <ty, t; is atime when the flow has reached its steady state) with damns
time stepAt.

Each collocation poiny; is surrounded by a control volun§®; defined asy;_1/»,
Yj+1/2] (see Fig. 1). For the end nodal points= 1 and j = m), the control
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volumes areQ; = [y1,Y141/2) and Qm = [Ym_1/2,Ym| respectively. Integration of
Eq. (34) overQ; yields

0 [Vi+i2 Yi+1/2 92U Yi+1/2 9T
e u(t,y)dy—(1—¢€ / — (t,y dy:/ X (t,y)dy. (43)
ot Yi-1/2 (®.Y) ( ) Yi-1/2 5y2( ) Yi-1/2 oy t.y)

Assuming thatu is linear over the time intervait = [t;, ti,1], Eq. (43) can be
written as follows.

Re [Yi+iz Re [Yi+iz au
Kt/ u(tizs,y)dy— Kt/ u(ti,y)dy— (1_8)0_)/ (tix1,Yj11/2)

Yi-1/2 Yi-1/2
Ju
+(1-¢) ay (tiv1,Yj—1/2) = Tyx (6, Yj11/2) — Tyx (,Yj-1/2) » (44)
or
dy; du; Yi+1/2
—a d;+l (Yj+1/2) + OId;+l (Yi-1/2) +Y Uira (Y) dy = Tyxi (Yjt1/2)
Yy y Yj-1/2
Yi+1/2
—Tyi (Yj—1/2) +V ui(y)dy, (45)
Yj-1/2

wherey = Re/At; a = 1—¢€; ui(y) = u(ti,y) and Ty (y) = Tyx(ti,y) with ug(y) =
u(0,y) andtyxo(y) = Tyx(0,).

Making use of (23)-(25) and (29)-(30), the valuesigf;, du; 1 /dy andd?u; 1 /dy?

in (45) at timet;, 1 and an arbitrary poiny in the domain under consideration can
be determined in terms of the nodal valugs, j as follows.

) = [61).65 ). GR (1.3 1] C M,

m
= J;d’j (Y) Uit (46)
dui L
g 0 = (6765 ), Gr 1),1,0]C i,
= 949 (Y) Uit1,j, (47)
=y
d2y; s
dyl2+l(y) a [GEZ](V)’G[;](V)’“-, L%](y)vo,o}c gury
m d2 .
= —(ZJ (Y) Uit1,j, (48)
=y

where¢;’s are new basis functions in the physical space.
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The integrals in (45) are calculated using Gauss quadratdeking use of Egs.
(46)-(48), the evaluation of Eq. (45) withe [2,3,--- ,m— 1] generates a system
of algebraic equations in terms of the unknown nodal valdies.q at the internal
collocation points and timg, ;.

In this work, we use a time stefit = 2 x 1072, (At = 10~* in [Laso and Ottinger
(1993); Mochimaru (1983)] andt = 102 in [Tran-Canh and Tran-Cong (2002,
2004); Tran, An-Vo, Mai-Duy, and Tran-Cong (2011)]) and latigely coarse spa-
tial discretizationAy = 0.05 (i.e. the number of collocation pointsris= 21). The
approximated results are in good agreement with ones @ataising the other
methods mentioned above. Indeed, Figure 2 shows the ewolofithe velocity at
four locationsy = 0.2, 0.4, 0.6 and 08 in comparison with ones using the IRBF-
BCF collocation method [Tran, An-Vo, Mai-Duy, and Tran-@o(2011)], with

At = 0.01 andAy = 0.05. Figure 3 depicts the evolution of the shear stress at four
locationsy = 0.2, 0.4, 0.6 and 08 in comparison with the results by the IRBF-BCF
collocation method. Figure 4, describing the evolutiontaf stress profile at the
locationy = 0.2, shows that the present method significantly reduces s\oishe
approximation of a random process. This is reinforced bygihed convergence
measure (CM) obtained for a stochastic approach as showigumeFs. Further-
more, the results by the present method are also in very ggregiaent with ones
obtained from a macroscopic approach (the Finite Diffeeedethod (FDM)) for

the Oldroyd-B model fluid (corresponding to the Hookean doetibmodel fluid)
with At = 0.01 andAy = 0.01 at the steady state for both velocity and stress fields.
However, there is a small difference at the unsteady stégerE6).

Finally, using coarser numbers of collocation poimts= 11, m= 15 andm= 17),
the results showed that the present method is able to praaliigh degree of
accuracy with a relatively coarse grid. For example, Figudepicts the evolution
of the shear stress (left figure) and the velocity at the lonat= 0.2 using 11 grid
points.



Manuscript submitted to CMES

15
6.2 The FENE dumbbell model
For the FENE dumbbell model, equations (35)-(37) are résvrias
1 P(ty) du 1
dP(t = — — (t t dt+ —dV (t 49
(t,y) ( 2WelF§)2+@y(,y)Q(,y)) * e (t), (49)
1 Q(ty) 1
dQ(t = — dt dw (t 50
A = g, e ) (50)
_ £ 1[PtyQ(ty)
Tyx (tay) - wen ( 1_ @ ) (51)

where||R||? = P2+ Q2. The problem is solved with the following chosen physical
parametersno = Ns+Np = 1; p = 1.2757; Ay = 49.62; ns = 0.0521 andb = 50

as in [Laso and Ottinger (1993); Tran-Canh and Tran-Con@420Tran, An-\o,
Mai-Duy, and Tran-Cong (2011)], wherg, np, p, Ay are defined as before. The
corresponding Weissenberg, Reynolds numbers and thesratiogiven by

= pVL =1.2757; We= AuV =4962; €= Mo _ 0.9479; (52)
No L No

For this case, the Predictor-Corrector method is emplogatiscretize the SDEs

(49)-(50). Figure 8 shows evolutions of the velocity (lefjuiie) and shear stress

(right figure) of the FENE dumbell model fluid at four locatson= 0.2,y = 0.4,

y = 0.6 andy = 0.8, using 11 collocation points, time ste&pt = 0.02 and 2000

dumbbells assigned in each control volume. Although witbaser grid of collo-

cation points (i.e. the number of grid points is 11), the agjmated results of the

present method are in very good agreement with those ofusépproaches [Laso

and Ottinger (1993); Tran-Canh and Tran-Cong (2002, 2004)]

Re

7 Concluding remarks

This paper reports the development of a continuum-micrdiraaéle method for
the simulation of flow of dilute polymer solutions using a durmation of the Inte-

grated Radial Basis Function Control Volume method and tleavBian Configura-

tion Field scheme. The method is verified with standard tedilpms. Advantages
of the new approach include (i) to obviate the need for a ddeem constitutive

equation; (ii) to achieve very efficient Cartesian grid disisation for the macro-
scale equations; (iii) to improve the approximation accyrdiv) to avoid the re-

duction in convergence rate caused by differentiation; (&hdo reduce the white
noise in the approximation via the use of integration as aoshitag operator.
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) ¥=

Figure 1: The start-up planar Couette flow problem: the pofptate moves with a
constant velocity = 1, the top plate is fixed; no-slip boundary condition is agxbli
at the fluid solid interfaces. The collocation point disitibn is only schematic.
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Figure 2: The start up planar Couette flow (Fig. 1) of the Hamkéumbbell model
fluid: the parameters of the problem are number of dumblne#s1000, number
of collocation pointsn= 21,At = 0.02, Weissenberg Numb®&/e = 0.5; Reynolds
NumberRe = 0.1 and the ratie = 0.9. The evolution of the velocity at locations
y=0.2,y=0.4,y= 0.6 andy = 0.8 using the present method (IRBFCV-BCF) and
the IRBF-BCF method (Tran, An-Vo, Mai-Duy, and Tran-Con§12)).

IRBFCV-BCF IRBF—BCF

Figure 3: Start-up planar Couette flow of a Hookean dumbbeliehfluid: The
evolution of shear stress at the locatigns 0.2,y = 0.4,y = 0.6 andy = 0.8 using
the present method (left figure) and the IRBF-BCF methodch{rfggure) [Tran,
An-Vo, Mai-Duy, and Tran-Cong (2011)].
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Figure 4: Start-up planar Couette flow of a Hookean dumbbelilehfluid: The
evolution of shear stress at the locatigns 0.2,y = 0.4,y = 0.6 andy = 0.8 using
the present method (left figure); a comparison of the sheassbbtained at the
locationy = 0.2 by the present method and the IRBF-BCF method (right figure)
[Tran, An-Vo, Mai-Duy, and Tran-Cong (2011)].
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Figure 5: Start-up planar Couette flow of a Hookean dumbbeliieh fluid: the
parameters of the problem are given in Figure 1 and the capfié-igure 2. The
convergence measure (CM) for the velocity field is defined3a).(
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Figure 6: Start-up planar Couette flow of a Hookean dumbbelliehfluid: The
evolution of shear stress at the locatigns 0.2,y = 0.4,y = 0.6 andy = 0.8 using
the present method (left figure) and the FDM for the oldroydi8del fluid (right
figure).
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Figure 7: Start-up planar Couette flow of a Hookean dumbbelliehfluid: The
evolution of velocity (right figure) and shear stress (lefufie) at the locatioy =
0.2 using 21 and 11 collocation points.
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IRBFCV - FENE
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Figure 8: The start-up planar Couette flow of the FENE dunilvhetlel fluid: The

parameters of the problem are shown in Fig. 1. The evolutidtise velocity (left

figure) and the shear stress (right figure) at locations y 0:20.4,y = 0.6 and y
=0.8.



