167 research outputs found

    Molecular tools in the diagnostic and epidemiology of infections caused by members of Mycobacterium avium Complex

    Get PDF
    Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies

    Novel single nucleotide polymorphism-based assay for genotyping Mycobacterium avium subsp. paratuberculosis

    Get PDF
    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates

    Pseudomonadota in the oral cavity: a glimpse into the environment-human nexus

    Get PDF
    The phylum Pseudomonadota is amongst the most represented in the environment, with a comparatively lower prevalence in the human oral cavity. The ubiquity of Pseudomonadota and the fact that the oral cavity is the most likely entry portal of bacteria from external sources underlie the need to better understand its occurrence in the interface environment-humans. Yet, the relevance oral Pseudomonadota is largely underexplored in the scientific literature, a gap that this review aims at addressing by making, for the first time, an overview of the diversity and ecology of Pseudomonadota in the oral cavity. The screening of scientific literature and human microbiome databases unveiled 1328 reports of Pseudomonadota in the oral cavity. Most of these belonged to the classes Beta- and Gammaproteobacteria, mainly to the families Neisseriaceae, Campylobacteriaceae, and Pasteurelaceae. Others also regularly reported include genera such as Enterobacter, Klebsiella, Acinetobacter, Escherichia, Burkholderia, or Citrobacter, whose members have high potential to acquire virulence and antibiotic resistance genes. This review provides evidence that clinically relevant environmental Pseudomonadota may colonize humans via oral cavity. The need for further investigation about Pseudomonadota at the environment-oral cavity interface and their role as vectors potentially involved in virulence and antibiotic resistance transmission is demonstrated. Key points: • Neisseriaceae, Campylobacteriaceae, and Pasteurelaceae are part of the core oral microbiome • Enterobacteriaceae, Acinetobacter, or Burkholderia are frequent in the oral microbiome • Gut dysbiosis may be associated with colonization by ubiquitous oral Pseudomonadota.info:eu-repo/semantics/publishedVersio

    Emergence and clonal spread of CTX-M-65-Producing Escherichia coli from retail meat in Portugal

    Get PDF
    Research Areas: MicrobiologyThe emergence and dissemination of resistance to third- and fourth-generation cephalosporins among Enterobacteriaceae from different sources impose a global public health threat. Here, we characterized by whole-genome sequencing four Escherichia coli strains harboring the blaCTX−M−65 gene identified among 49 isolates from beef and pork collected at retail. The genomic content was determined using the Center for Genomic Epidemiology web tools. Additionally, the prediction and reconstruction of plasmids were conducted, the genetic platform of the blaCTX−M−65 genes was investigated, and phylogenetic analysis was carried out using 17 other genomes with the same sequence type and harboring the blaCTX−M−65 gene. All strains harbored blaCTX−M−65, blaOXA−1, and blaTEM−1B, and one also carried the blaSHV−12 gene. Other resistance genes, namely, qnrS2, aac(60 )-Ib-c, dfrA14, sul2, tetA, and mphA, were present in all the genomes; the mcr-1.1 gene was identified in the colistinresistant strains. They belong to sequence type 2179, phylogenetic group B1, and serotype O9:H9 and carried plasmids IncI, IncFIC(FII), and IncFIB. All strains share an identical genetic environment with IS903 and ISEcp1 flanking the blaCTX−M−65 gene. It seems likely that the blaCTX−M−65 gene is located in the chromosome in all isolates based on deep in silico analysis. Our findings showed that the strains are clonally related and belong to two sub-lineages. This study reports the emergence of CTX-M-65- producing E. coli in Portugal in food products of animal origin. The chromosomal location of the blaCTX−M−65 gene may ensure a stable spread of resistance in the absence of selective pressure.info:eu-repo/semantics/publishedVersio

    Prenatal diagnosis in severe cases: a new gain in Portuguese neonatal

    Get PDF
    Introduction The expansion of the Portuguese neonatal screening since 2004, based on MS/MS technology, allows the tracing of 25 diseases in all Portuguese newborns in one single laboratory. Following this expansion, the molecular study was also implemented for most diseases, thus allowing confirmation and prenatal diagnosis in severe cases. Methods Five prenatal diagnoses were made in pregnant women who had children affected with severe forms of CPT2 deficiency, ARG1 deficiency, MAD deficiency and LCHAD deficiency. Disease-causing mutations were previously identified in the index patients. Genomic DNA was isolated from whole blood, cultured amniotic fluid cells or chorionic villous tissue by standard methods. Mutations were detected through direct sequencing of PCR products, performed on an automatic sequencer. Results Three prenatal diagnoses were performed on mothers with affected children, found through neonatal screening: CPT2D, MADD and LCHADD. Two other prenatal diagnoses for ARG1D were requested from Italy and France Centers. Results revealed two affected fetus and two heterozygous carriers. One of the studies is still in progress. Discussion Molecular prenatal diagnosis for severe forms can establish the diagnosis in the first trimester of pregnancy. Nevertheless, this procedure is conditioned by prior knowledge of responsible mutations in the index cases

    Perfil de sensibilidade de Staphylococcus spp. e Streptococcus spp. isolados de brinquedos de brinquedoteca de um hospital de ensino

    Get PDF
    AbstractObjectiveTo evaluate the presence of microorganisms of the genus Staphylococcus and Streptococcus on toys in the playroom of a teaching hospital, as well to as analyze the antimicrobial from the isolated strains.MethodsSamples were collected from 60 toys, using wet swabs, soon after being used by the children. The samples were inoculated in enriched and selective agar for isolation and later identification of the microorganisms. Antibiogram testing was performed by agar diffusion technique.ResultsThe genus Staphylococcus was present in 87.0% (52/60) of the toys. Seventythree strains were isolated, with 29.0% (21/73) coagulase-positive and 71.0% (52/73) coagulase-negative. Among the coagulase-negative strains, 90.4% were resistant to penicillin, 65.4% to oxacillin, 28.8% to clarithromycin, 61.5% to clindamycin, and none to vancomycin. Among the coagulase-positive strains, 76.2% were resistant to penicillin, 23.8% to oxacillin, 23.8% to clarithromycin, 47.6% to clindamycin, and none to vancomycin. The genus Streptococcus was not detected in any of the evaluated toys.ConclusionsToys can be contaminated with potentially pathogenic bacteria with antimicrobial resistance, representing a possible source of nosocomial infection for patients who are already debilitated

    Sensitivity profile of Staphylococcus spp. and Streptococcus spp. isolated from toys used in a teaching hospital playroom* *Study conducted at Instituto Básico de Biociências da Universidade de Taubaté, Taubaté, SP, Brazil.

    Get PDF
    AbstractObjectiveTo evaluate the presence of microorganisms of the genus Staphylococcus and Streptococcus on toys in the playroom of a teaching hospital, as well to as analyze the antimicrobial resistance from isolated strains.MethodsSamples were collected from 60 toys, using wet swabs, soon after being used by the children. The samples were inoculated in enriched and selective agar for isolation and later identification of the microorganisms. Antibiogram testing was performed by agar diffusion technique.ResultsThe genus Staphylococcus was present in 87.0% (52/60) of the toys. Seventy-three strains were isolated, with 29.0% (21/73) coagulase-positive and 71.0% (52/73) coagulase-negative. Among the coagulase-negative strains, 90.4% were resistant to penicillin, 65.4% to oxacillin, 28.8% to clarithromycin, 61.5% to clindamycin, and none to vancomycin. Among the coagulase-positive strains, 76.2% were resistant to penicillin, 23.8% to oxacillin, 23.8% to clarithromycin, 47.6% to clindamycin, and none to vancomycin. The genus Streptococcus was not detected in any of the evaluated toys.ConclusionsToys can be contaminated with potentially pathogenic bacteria with antimicrobial resistance, representing a possible source of nosocomial infection for patients who are already debilitated

    Microbiome and resistome profiles along a sewage-effluent-reservoir trajectory underline the role of natural attenuation in wastewater stabilization reservoirs

    Get PDF
    Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs.IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater. Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs.info:eu-repo/semantics/acceptedVersio
    corecore