158 research outputs found

    UNLV - CCSD Collaborative English Language Learners

    Full text link
    This proposal will provide statistical context of the overall performance of English Language Learner (ELL) students in Clark County School District (CCSD) and proposes a study that will assist the CCSD in identifying programs and strategies that increase ELL student performance on the third grade State mandated Criterion Reference Test (SMCRT) in reading and mathematics. To accomplish this goal, the proposed research project will first identify teaching methodologies, curricular strategies and support services that CCSD teachers are employing to assist ELL students in achieving satisfactory performance. These factors will be analyzed in comparison to SMCRT scores to determine the relative success or failure of these approaches

    Synthesis and characterization of polymer/silica/QDs fluorescent nanocomposites with potential application as printing toner

    Get PDF
    In this work cadmium telluride quantum dots (CdTeQDs) were prepared via one-pot synthesis microwave assisted. Afterwards, CdTeQDs/silica (SiO2)/nigrosine (nigro)/poly (styrene co-methyl methacrylate) (PSCMM) fluorescent nanocomposite (CSNP) powders were prepared via ultrasonic treatment and post drying at 60 °C. The samples were characterized by UV-vis absorbance, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Finally, successful printing tests were performed on security paper at 130 °C. These results show the potential of this nanocomposite to be used as security toner. This printing toner configuration is reported for first time

    The infinite server problem

    Get PDF
    We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the resource augmentation version of the k-server problem, also known as the (h,k)-server problem, in which an online algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the infinite server problem has bounded competitive ratio if and only if the (h,k)-server problem has bounded competitive ratio for some k=O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite server problem, which holds even for the line and some simple weighted stars. It implies the same lower bound for the (h,k)-server problem on the line, even when k/h → ∞, improving on the previous known bounds of 2 for the line and 2.4 for general metrics. For weighted trees and layered graphs, we obtain upper bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line, which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded interval. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing algorithms) fail even for this special case

    Single-Sample Prophet Inequalities via Greedy-Ordered Selection

    Get PDF
    We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al.</p

    Carta editorial

    Get PDF
    Carta editoria

    Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model.

    Get PDF
    Ecosystem service (ES) models can only inform policy design adequately if they incorporate ecological processes. We used the Lund-Potsdam-Jena managed Land (LPJmL) model, to address following questions for Mexico, Bolivia and Brazilian Amazon: (i) How different are C stocks and C sequestration quantifications under standard (when soil and litter C and heterotrophic respiration are not considered) and comprehensive (including all C stock and heterotrophic respiration) approach? and (ii) How does the valuation of C stock and C sequestration differ in national payments for ES and global C funds or markets when comparing both approach? We found that up to 65% of C stocks have not been taken into account by neglecting to include C stored in soil and litter, resulting in gross underpayments (up to 500 times lower). Since emissions from heterotrophic respiration of organic material offset a large proportion of C gained through growth of living matter, we found that markets and decision-makers are inadvertently overestimating up to 100 times C sequestrated. New approaches for modelling C services relevant ecological process-based can help accounting for C in soil, litter and heterotrophic respiration and become important for the operationalization of agreements on climate change mitigation following the COP21 in 2015

    Synthesis of Fe nanoparticles functionalized with oleic acid synthesized by inert gas condensation

    Get PDF
    In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs) in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC) technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM). Particle size control was carried out through the following parameters: (i) condensation zone length, (ii) magnetron power, and (iii) gas flow (Ar and He). Typically the nanoparticles generated by IGC showed diameters which ranged from ∼0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF) that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%

    Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. v4

    Get PDF
    Studying the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores - soluble, low molecular weight compounds - have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition for acquiring iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of 'odd' siderophores can reveal the evolutionary strategy that led to their creation. Here, we here report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholerae vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.This work was supported by the National Institutes of Health (Grants GM82137 to R.K., and AI057159 and GM086258 to J.C.). M.R.S. acknowledges support from the NIH Pathway to Independence Award (Grant 1K99 GM098299-01). S.C. and M.J.V. acknowledge support from the Portuguese Foundation for Science and Technology (PhD Grant SFRH/BD/38298/2007 to S.C.; Project PTDC/EBB-EBI/104263/2008 to M.J.V.)
    corecore