
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Single-Sample Prophet Inequalities via Greedy-Ordered Selection

Caramanis, C.; Dütting, P.; Faw, M.; Fusco, F.; Lazos, P.; Leonardi, S.; Papadigenopoulos,
O.; Pountourakis, E.; Reiffenhäuser, R.
DOI
10.48550/arXiv.2111.03174
10.1137/1.9781611977073.54
Publication date
2022
Document Version
Author accepted manuscript
Published in
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)

Link to publication

Citation for published version (APA):
Caramanis, C., Dütting, P., Faw, M., Fusco, F., Lazos, P., Leonardi, S., Papadigenopoulos,
O., Pountourakis, E., & Reiffenhäuser, R. (2022). Single-Sample Prophet Inequalities via
Greedy-Ordered Selection. In J. Naor, & N. Buchbinder (Eds.), Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 1298-1325). Society for
Industrial and Applied Mathematics. https://doi.org/10.48550/arXiv.2111.03174,
https://doi.org/10.1137/1.9781611977073.54

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:24 Jan 2024

https://doi.org/10.48550/arXiv.2111.03174
https://doi.org/10.1137/1.9781611977073.54
https://dare.uva.nl/personal/pure/en/publications/singlesample-prophet-inequalities-via-greedyordered-selection(18af392c-90ed-434d-a034-18ee60ba9a39).html
https://doi.org/10.48550/arXiv.2111.03174
https://doi.org/10.1137/1.9781611977073.54

ar
X

iv
:2

11
1.

03
17

4v
1

 [
cs

.D
S]

 4
 N

ov
 2

02
1

Single-Sample Prophet Inequalities via Greedy-Ordered Selection

Constantine Caramanis∗ Paul Dütting† Matthew Faw∗ Federico Fusco‡

Philip Lazos‡§ Stefano Leonardi‡ Orestis Papadigenopoulos∗

Emmanouil Pountourakis¶ Rebecca Reiffenhäuser‡

Abstract

We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample
from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem
[Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy reduction
to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an
intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction
to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of
prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a
number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex
arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions).
Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the
power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI
to OOS given by Azar et al.

1 Introduction

Prophet inequalities are fundamental models from optimal stopping theory. In the simplest version of
prophet inequalities [Krengel and Sucheston, 1977, 1978, Samuel-Cahn, 1984], a set of n elements with rewards
r1, r2, . . . , rn sampled independently from known distributions D1, D2, . . . , Dn arrive in a fixed order. After
each element is observed, the online algorithm can either accept the reward and stop, or drop it and move to
consider the next element in the sequence. The goal is to show an α-competitive prophet inequality, i.e., an online
algorithm such that the expected reward of the computed solution is at least a 1/α-fraction of the expected value
of an optimal solution that can observe the values of all rewards before making a choice. The original work
of Krengel and Sucheston [1977, 1978] and Samuel-Cahn [1984] has established a tight 2-competitive prophet
inequality for the single-choice selection problem, i.e., the problem of selecting only one out of n elements.

Motivated also by applications to algorithmic mechanism design and to pricing goods in markets, later
work has extended prophet inequalities to a broad range of problems, including matroids and polyma-
troids, bipartite and non-bipartite matching, and combinatorial auctions [e.g., Alaei, 2014, Chawla et al., 2010,
Kleinberg and Weinberg, 2012, Dütting and Kleinberg, 2015, Feldman et al., 2015, Dütting et al., 2020a,b].

For many applications, the assumption of knowing the distributions exactly, as in the prophet model, is rather
strong. It is consequential to ask whether near-optimal or constant-factor prophet inequalities are also achievable
with limited information about the distributions. A natural approach in this context (pioneered by Azar et al.
[2014]) is to assume that the online algorithm has access to a limited number of samples from the underlying
distributions, e.g., from historical data. Arguably, a minimal assumption under this approach is that the online
algorithm has access to just a single sample from each distribution.

Surprisingly, even under this very restrictive assumption, strong positive results are possible. Importantly, for
the classic single-choice problem one can obtain a factor 2-approximate prophet inequality with just a single sample

∗The University of Texas at Austin, USA. Email: {constantine,matthewfaw}@utexas.edu, papadig@cs.utexas.edu
†Google Research, Zürich, Switzerland. Email: duetting@google.com
‡Sapienza University of Rome, Italy. Email: {fuscof,plazos,leonardi,rebeccar}@diag.uniroma1.it
§IOHK. Email: philip.lazos@iohk.io
¶Drexel University, Philadelphia, USA. Email: manolis@drexel.edu

http://arxiv.org/abs/2111.03174v1

[Rubinstein et al., 2020], matching the best possible guarantee with full knowledge of the different distributions.
The same problem, but with identical distributions, was considered by Correa et al. [2019], who showed that with
one sample from each distribution it is possible to achieve a e/(e − 1) guarantee. This bound was subsequently
improved by Kaplan et al. [2020] and Correa et al. [2020a, 2021, 2020b].

The central question we study in our work is whether similar results can also be obtained for more general
combinatorial settings. This question was investigated first by Azar et al. [2014], who showed that for some
combinatorial problems it is possible to achieve the same asymptotic guarantees as with full knowledge of the
distributions with just a single sample from each distribution. The results they give are largely based on an
elegant reduction to order-oblivious secretary (OOS) algorithms: in this model, there is no sample or other
information about the distributions available - instead, a constant and random fraction of the input is observed
for statistical reasons. Then, only on the remainder of the instance, an adversarial-order online algorithm is run
to select elements. The reduction of SSPIs to OOSs relies on the following observation: with the single sample
available to an SSPI, one can replace the sampled part of the instance in the first, statistical phase of any OOS.
Since the sample values are drawn from the exact same distributions as those that were part of the original
problem instance, this results in the exact same input distribution as the original OOS (and, therefore, the same
competitive guarantee).

However, SSPIs derived from OOSs in this fashion are inherently lossful: the information from the sample
available to such an SSPI remains partly unused, since the secretary algorithm utilizes only those sampled values
that belong to elements in its statistical, not its selection phase. In addition, the elements used in the statistical
phase are automatically rejected. We deviate from designing SSPIs via this construction and instead give a
versatile and intuitive technique to design SSPIs directly. Our focus is to design SSPIs directly for matchings,
matroids, and combinatorial auctions that are central to the area of secretary and prophet algorithms.

Besides presenting improved or completely new SSPIs for many such problems, we also investigate the power
and limitations of the SSPI paradigm with respect to prior-free OOSs on one side, and full-information prophet
inequalities on the other. Here, we take important steps towards solving the central open question whether
constant-factor SSPIs exist for the prominent, but notorious problems of combinatorial auctions and general
matroids.

1.1 A New Framework for Single-Sample Prophet Inequalities Our first contribution is a framework for
deriving SSPIs directly via greedy-ordered selection algorithms as we describe in the following. This framework can
be applied to a range of problems in the SSPI setting, two of which we put special focus on: First, we derive SSPIs
with considerably improved competitive ratios for variants of max-weight matching problems on general/bipartite
graphs, extending also to strategic settings. Second, we employ a richer version of the same design principles to
provide the first constant-factor SSPI for a combinatorial auction setting, namely combinatorial auctions with
budget-additive buyers. Note that we are able to obtain especially the latter result only via exploiting the high
abstraction level and clear structure of probabilistic events within our framework.

1.1.1 Single-Sample Prophet Inequalities via Greedy-Ordered Selection Consider the general problem
of selecting online a feasible subset from a number of elements, which arrive in some adversarial order. We
propose a very general and versatile technique for selecting elements in our online algorithms that can be seen as
a generalization of several approaches in the literature.

At its core, our method is based on two basic and simple insights. As a first ingredient, we use the well-known
greedy algorithm, which considers all elements of a set decreasingly by their value and selects an element if and
only if the resulting set of chosen elements is still feasible. The greedy algorithm, although it is offline in the
sorting phase, behaves like an online algorithm on the ordered set of elements. Our second ingredient is the fact
that drawing two values re, se from the distribution of an element e is equivalent to drawing ve,1, ve,2 and then
flipping a fair coin to decide which one to use as the realization of re, and which as the sample se.

On a high level, our algorithms work as follows:
Greedy Phase: first, run a greedy procedure on the sampled values of all elements, and remember for every

element e the threshold-value τe for which the following holds: element e would have been selected by greedy if
we added it to the set of samples with a value re > τe.

Online Phase: second, on arrival of an element in the adversarial order of the SSPI, observe its reward re.
If re > τe, and e together with all so-far selected elements is still feasible, collect e.

The reason that variations of this simple algorithmic idea yield constant-factor approximations is a
combination of our two observations from above. First, the online character of greedy after sorting all elements
ensures that whether any element is chosen only depends on the larger values considered before, but is independent
from any later steps, which we heavily rely on in our proofs. Second, the described process of first drawing two
values from each element’s distribution and only later deciding which is the actual reward relates the quality of
the greedy solution on the samples to the online selection process on the actual rewards, and ensures the described
thresholds are feasible.

As mentioned before, this type of idea is employed somewhat differently in many existing works. For example,
and most closely related to our work, the optimal SSPI of [Rubinstein et al., 2020] for the single-choice setting
can be interpreted as an implementation of the same paradigm. Also closely related is work by Korula and Pál
[2009], who use greedy pricing combined with the random process of assigning values to the statistics or selection
phase of a secretary algorithm (instead of sample or reward value in a SSPI) for bipartite weighted matching, and
Ma et al. [2016], who apply the greedy idea to submodular secretary problems.

We provide a general and abstract view towards methods of the above type that aids the proofs of our
approximation results by making the two key insights presented above very explicit. First, we use the online-
offline-properties of greedy to state an equivalent offline version to each of our SSPIs, enabling us to much more
easily keep track of probabilistic events and the computed thresholds. Second, we use the view of deciding only
in the very last moment which of the two values drawn for an element is the sample or the reward to define (and
bound the size of) a set of safe elements which even the adversarial arrival order cannot prevent us from picking.

Note that the above abstraction is indeed crucial for obtaining our results, since compared to previous work,
we face some extra challenges. First, our problems are combinatorially richer than, e.g., the single-choice prophet
inequality, requiring careful and dedicated adjustments to the greedy algorithms and thresholds we use for the
first algorithm phase. Second, as opposed to applications in the secretary paradigm, the arrival orders in our
model are fully adversarial, which poses an extra obstacle to guaranteeing a safe set in the above sense. Finally,
the fact that (again opposed to secretary algorithms) we deal with more than one value associated with the same
element (sample and reward) breaks the convenient independence of some of the greedy algorithm’s decisions.
This requires delicate handling of the resulting dependencies.

1.1.2 New and Improved Single-Sample Prophet Inequalities We now present the results we derive
within our greedy framework, which allows us to significantly improve on the competitive guarantees of many
existing SSPIs, and provide the first constant-factor SSPIs for some problems previously not covered by this
paradigm.

Max-weight matching with general edge arrivals. In Section 2, we apply the above ideas to the case
of maximum weight matching in general (non-bipartite) graphs with edge arrivals – Here, edges e ∈ E of a
graph G, each associated with a certain nonnegative weight w(e), arrive one by one in adversarial order. The
algorithms aims at selecting a maximum-weight matching M ⊆ E, such that each vertex has at most one incident
edge in M . Before our work, the state-of-the-art for this problem was a 512-competitive algorithm derived via
Azar et al. [2014] and the 256-competitive OOS in Feldman et al. [2016] for bipartite graphs, by choosing a random
bipartition. We improve this to a 16-competitive SSPI derived via our framework. The proof of this result is
exemplary for the key insights that drive our analyses.

Max-weight bipartite matching. In Section 3, we focus on the case of bipartite matching with vertex
arrival where the items are available offline, and buyers arrive in adversarial order. Here, we provide an 8-
competitve SSPI, again improving considerably over the 256-competitive SSPI.1 The improved factor is obtained
by exploiting the fact that due to vertex arrival, all edges of the same buyer become available at once. Then,
we complement this result with a truthful mechanism, which is based on the idea of tightening the threshold
requirements for each edge in a way that agents cannot hurt the approximation too much by picking the wrong
elements on arrival. In particular, we give a 16-approximate mechanism, which to the best of our knowledge
is the first single-sample result for this setting. Finally, we show an 8-competitive SSPI for the closely related
(and somewhat more restricted) problem of selecting an independent set of elements in a transversal matroid,
improving on the previous 16-approximation by Azar et al. [2014].

1We observe however that a SSPI with better competitive ratio for this problem can also be achieved by adjusting the analysis in
Korula and Pál [2009] to become order-oblivious, which yields a 13.5 competitive policy.

Combinatorial set Previous best Our results

General matching (edge arrivals) 512 16
Budget-additive combinatorial auction N/A 24

Bipartite matching (edge arrivals) 256 16
6.75 (degree-d) 16 (any degree)
O(d2)-samples 1 sample

Bipartite matching (vertex arrivals) 13.5 8
Transversal matroid 16 8

Graphic matroid 8 4
Co-graphic matroid 12 6
Low density matroid 4γ(M)3 2γ(M)

Column k-sparse linear matroid 4k 2k

Table 1: Summary of main results

Budget-additive combinatorial auctions. In Section 4 we consider a more general problem, where buyers
can be allocated more than one item, and each buyer b’s valuation is of the form vb(S) = min{∑

i∈S vb(i), Cb},
for S a set of items and Cb a publicly known, buyer-specific budget. Here, a buyer’s valuation for being assigned
additional items changes with the assignment of any previous ones. This dependence, although it makes the
design and, to an even greater extent, analysis of our algorithms considerably more involved, can still be resolved
without incurring too much loss. As a result, we are able to show a 24-competitive SSPI for this model. This,
to the best of our knowledge, is the first SSPI for a combinatorial auction setting beyond the simple case of
additive valuations, and raises hope that the scope of constant-factor SSPIs reaches even further towards that of
full-information prophet inequalities.

Matroids. In Section 5, we further demonstrate the improvement potential of directly designing SSPIs by
considering matroids which satisfy a natural partition property. As we observe, many OOS policies for matroids
rely on decomposing the given matroid into several parallel (in terms of feasibility) rank-1 instances, and then run
an OOS policy (in parallel) on each of these instances. Rather than using the 4-competitive single-choice OOS
policy of Azar et al. [2014], the same partitioning allows us to leverage the results of Rubinstein et al. [2020], which
give a 2-competitive policy for the SSPI problem on rank-1 matroids. This allows us to improve the competitive
guarantees for almost all the matroids considered in Azar et al. [2014] by a factor of 2.

Summary of our results and additional properties. In Table 1, we outline our improved SSPIs and
compare them to previous work. As we have already mentioned, almost all existing SSPIs follow from the reduction
to OOS, due to Azar et al. [2014], in combination with existing OOS policies (see [Dimitrov and Plaxton, 2012]
for transversal matroid, [Korula and Pál, 2009] for graphic matroid and bipartite matching with vertex arrivals,
and [Soto, 2013] for co-graphic, low density, and column k-sparse linear matroids).

We remark that (with the exception of budget-additive combinatorial auctions) all of our algorithms are
ordinal (also known as comparison-based), in the sense that they do not require accurate knowledge of the values
of the random variables, but only the ability to compare any two of them. Further, we emphasize that our
competitive guarantees hold against an almighty fully-adaptive adversary – that is, an adversary who is a priori
aware of all sample/reward realizations, and can decide on the arrival order of the elements in an adaptive
adversarial manner.

Finally, we remark that our improved SSPIs can be used to provide truthful mechanisms with improved
approximation guarantees comparing to Azar et al. [2014] for welfare and revenue maximization.2 We refer the
reader to Azar et al. [2014] for more details.

1.2 Limitations of Single-Sample Prophet Inequalities We have seen that for a large range of problems,
SSPIs provide guarantees close to those of traditional prophet inequalities, and direct SSPIs as in our results

2Note that, for the case of revenue maximization, and since our algorithms make use of all the available samples, an extra sample
is needed to be used as “lazy reserves” (see Azar et al. [2014] for a definition).

3The density of a matroid M(E, I) is defined as γ(M) = maxS⊆E

|S|
r(S)

, where r is the rank function.

improve consistently on those derived via Azar et al. [2014]’s reduction to OOSs. This positions the SSPI paradigm
in between full-information prophets and the prior-free OOSs. In consequence, direct SSPIs raise hope for problems
that offer good prophet inequalities, but remain resistant to constant-factor OOSs. Here, while we are making
some progress with respect to combinatorial auction settings by providing a constant-factor SSPI for the budget-
additive case, our results on matroids – although improving in terms of competitive ratio – do not extend to
settings beyond those covered by constant-factor OOSs. This limitation to our progress is, as we observe, not a
coincidence. In fact, we analyze more generally the power of SSPIs versus that of OOSs, and show the following
partial reverse to the reduction of Azar et al. [2014]:

Theorem. (informal) For a large and intuitive subclass of SSPIs, which we call pointwise or P-SSPIs, the
existence of a constant-factor P-SSPI policy implies that of an according OOS policy.

This shows that with our, and all other existing SSPI methods, there is no hope to achieve constant-factor
SSPIs for problems that do not allow for constant-factor OOSs. E.g., if any of the existing SSPI strategies did
yield a constant approximation to the general matroid prophet inequality problem, this would also solve the
famous matroid secretary conjecture of Babaioff et al. [2007] 4.

1.3 Further Related Work A great deal of attention has been given to multi-choice prophet inequalities under
combinatorial constraints such as uniform matroid constraints [Hajiaghayi et al., 2007, Alaei, 2014] and general
matroid constraints [Chawla et al., 2010, Kleinberg and Weinberg, 2012, Feldman et al., 2016]. A number of works
have obtained prophet inequalities for matchings and combinatorial auctions [Alaei et al., 2012, Feldman et al.,
2014, Ehsani et al., 2018, Gravin and Wang, 2019, Dütting et al., 2020a,b, Ezra et al., 2020]. In particular,
Gravin and Wang [2019] provide prophet inequalities for weighted bipartite matching environments under edge
arrivals, and show a lower bound of 2.25 on the competitive ratio of any online policy for this setting, proving that
this problem is strictly harder than the matroid prophet inequality. Quite recently, Ezra et al. [2020] provided
a near-optimal prophet inequality for general weighted (non-bipartite) matching under edge arrivals. Beyond
these settings, recent work has considered the prophet inequality problem under arbitrary packing constraints
[Rubinstein, 2016, Rubinstein and Singla, 2017].

Regarding the prophet inequality problem in the limited information regime, in addition to their meta-result
connecting SSPIs with OOS algorithms, Azar et al. [2014] provide a threshold-based (1 − O(1/

√
k))-competitive

algorithm for k-uniform matroids. Further, Rubinstein et al. [2020] develop a (0.745−O(ǫ))-competitive algorithm
for the single-choice IID case, using O(n/ǫ6) samples from the distribution, improving on the results of Correa et al.
[2019]. Prophet inequalities that require a polynomial number of samples can also be obtained via the balanced
prices framework [Feldman et al., 2015, Dütting et al., 2020a].

The motivation for studying the prophet inequality problem in many of the above settings comes largely from
connections to mechanism design. While optimal single-parameter mechanisms for both welfare [Vickrey, 1961,
Groves, 1973, Clarke, 1971] and revenue [Myerson, 1981] have been well-understood for decades, there has been an
extended study of simple and practical mechanisms that approximate these objectives. Prophet inequalities are
known to be a powerful tool for designing simple posted-price mechanisms. Azar et al. [2014] show how to apply
results of Chawla et al. [2010], Azar et al. [2013], Dhangwatnotai et al. [2010] to obtain mechanisms in settings
where the mechanism designer only has access to a single sample (or a constant number of samples) from the
distribution of the agents’ values. A recent work of Dütting et al. [2021] also investigates single-sample mechanism
design for two-sided markets. The authors prove matching upper and lower bounds on the best approximation that
can be obtained with one single sample for subadditive buyers and additive sellers. Moreover, computationally
efficient blackbox reductions that turn any one-sided mechanism into a two-sided mechanism with a small loss in
the approximation, while using only one single sample from each seller are provided.

In concurrent and independent work, a greedy technique similar to our framework was implemented for the
problem of online weighted matching by Kaplan et al. [2021]. Their main model, adversarial-order model with a
sample, differs from ours in that it is closer to secretary algorithms than SSPI: instead of having two values for
each element, reward and sample, they assume the bipartite graph to consist of a historic part that is available
to the algorithm, and the actual problem instance. Using an intermediate step, the so-called two-faced model,

4We further remark that our reduction for P-SSPI, together with our P-SSPI for budget-additive combinatorial auction, also
implies a constant-factor OOS for this problem.

they derive constant factor approximation for SSPI for bipartite and general matching. In particular, they show
a 13.5-approximation for the general graph, edge arrival model and a 3 + 2

√
2 ≈ 5.83-approximation for the

bipartite, vertex arrival model.

1.4 Organization of the Paper We start by implementing our framework for the problem of max-weight
matching in general graphs with edge arrivals in Section 2, which offers the most straightforward version of
our online-offline analyses. In Section 3, we present our results on bipartite matchings with one-sided vertex
arrival, as well as their strategic/mechanism variant (Section 3.2) and the related problem of transversal matroids
(Section 3.3). In Section 4, we move on to the problem of combinatorial auctions with budget-additive buyers,
whose algorithm and proofs build on the previous results, but are considerably more challenging. In Section 5,
we strengthen our observation that direct SSPIs offer better competitive factors than those derived from OOSs:
in addition to our previous improvements on the results obtained for matching problems via Azar et al. [2014]’s
reduction, we do the same also for a wide class of matroid problems captured by such SSPIs. Finally, on the
negative side, we show via a partial reverse to Azar et al. [2014]’s reduction in Section 6 that for a large class of
SSPIs, the improvement over OOS policies is indeed limited to a constant. All omitted proofs can be found in
Appendix A.

2 Edge Arrival in General Graphs

In this section, we consider the case of matching on a general graph G = (V, E) with edge arrivals, where the
weight of each edge e ∈ E is drawn independently from a distribution De. We recall that, for the offline problem
where the edge weights are known a priori, the greedy algorithm that collects edges in a non-increasing order of
weight while maintaining feasibility is a 2-approximation. Our algorithm for this problem outlines very well the
idea we described above: to bridge the gap between the fixed order employed by greedy and the adversarial one
of prophet inequalities (where greedily adding edges would be arbitrarily bad), we utilize the independent single
samples S = {se | e ∈ E} that we have from all the edge distributions.

Note that throughout, we consider weighted sets to denote our edge sets and allocations, in the sense that
they contain for each edge e also the information about its associated weight w(e). Further, we assume to break
ties uniformly at random before running the algorithm, i.e. for the set of all drawn numbers that have value x,
pick a permutation π of those uniformly at random and define a draw of the same value to be larger than another
if and only if it comes first in π.

The algorithm first computes an offline greedy matching MS on the graph with edge weights S. Then, for
each vertex v, it interprets the weight of the edge incident to it in the greedy solution as a price pv for the
adversarial-order online algorithm, with the convention that pv = 0 if there is no edge in MS incident to v. In
the online phase, whenever an edge e = {u, v} arrives and both endpoints are free (i.e., not already matched), it
is added to the matching M if and only if re ≥ max{pv, pu}. To facilitate the analysis, together with the solution
M , the algorithm builds E′, a subset of E containing all the edges such that re ≥ max{pv, pu}, i.e., all edges
that are price-feasible. Note that E′ is a superset of the actual solution M and may not be a matching. See
Algorithm 1 for a pseudocode.

While the above algorithm is simple, the analysis is more challenging. As pointed out before, the greedy
method can be seen as an offline algorithm as well as an online algorithm with the extremely simplifying assumption
of a fixed and weight-decreasing arrival order. We combine such a shift of viewpoint with a suitable reformulation
of the random processes involved. More precisely, we look at our (online) algorithm as the byproduct of a run of
a (fixed-order!) greedy strategy on a random part of a fictitious graph that contains each edge twice: once with
the true weight re, and once with the sampled weight se.

Equivalent offline algorithm. To analyze the competitive ratio of Algorithm 1, we state an offline, greedy-
based algorithm with similar properties that is easier to work with. This offline procedure considers an equivalent
stochastic process generating the edge weights in S and R. Instead of first drawing all the samples, and then
all the realized weights, we consider a first stage in which, for each edge e, two realizations from De are drawn.
Then, all drawn realizations (2|E| in total) are sorted in decreasing order according to their values, breaking ties
at random as explained above. Finally, the offline algorithm goes through all these values in that order; each
value is then associated with S or R by a random toss of an unbiased coin. Consequently, the second, smaller
weight of the same edge arriving later is associated to the remaining category with probability 1. In particular,
an edge e is marked as R-used, when re > se, and S-used, otherwise. It is not hard to see that the distributions

Algorithm 1: Prophet Matching with Edge-Arrivals

Set E′ = ∅, M = ∅
Compute the greedy matching MS on the graph with edge weights according to sample S
for each e = {u, v} ∈ MS do

Set pu = pv = se

for each vertex u ∈ V unmatched in MS do
Set pu = 0

for each arriving e = {u, v} ∈ E do
if re ≥ max{pu, pv} then

Add e to E′. // This is just for the analysis.

if u, v are not matched in M then
Add e to M with weight re

return M

of S and R are identical for both random processes.
The pseudocode for this offline procedure is given in Algorithm 2. As already mentioned, it mimics in an

offline way the construction of MS and E′ of Algorithm 1, as shown in the following.

Algorithm 2: Offline Simulation for Matching with Edge-Arrivals

Set E′ = ∅, MS = ∅, M = ∅, and V S = V
For each e ∈ E, draw from De two values ae,1 and ae,2

Order A = {ae,1, ae,2|e ∈ E} in decreasing fashion
for each value a ∈ A in the above order do

if a corresponds to edge e = {u, v} that has never been observed before then
Flip a coin
if Heads then

Mark e as R-used

if u ∈ V S and v ∈ V S then
Add e to E′ with weight a

else
Mark e as S-used

if u ∈ V S and v ∈ V S then
Add e to MS with weight a

Remove u and v from V S

else if a corresponds to edge e = {u, v} which is R-used, u ∈ V S and v ∈ V S then
Add e to MS with weight a

Remove u and v from V S

for each e in the same order as Algorithm 1 do
if e in E′ and {e} ∪ M is a matching then

Add e to M with weight re

return M .

Claim 2.1. The sets E′, MS and M are distributed in the same way when computed by Algorithm 1 as when
computed by Algorithm 2.

Proof. As a preliminary result, we claim that the distribution of all rewards in R and samples in S is exactly the
same in both Algorithm 1 and Algorithm 2. This follows by the fact that, for each edge e, the distribution of re

remains the same if we simply sample re from De, independently, or if we sample two values ae,1 and ae,2 from
De, independently, and then set re equal to one of the two equiprobably. The symmetric argument holds for any
sample value in S.

Now, we just need to show that for any realization of the S and R values, the corresponding sets of edges of
interest are exactly the same in the offline and online setting. To avoid complication, we deterministically use the
same tie breaking rules in both the online and offline case.

First, notice that if we restrict the offline algorithm to consider only the samples S, we recover exactly the
procedure to generate a greedy matching with respect to the samples. This is true because what happens to the
values in R has no influence on MS. Hence, the two versions of MS in the different algorithms indeed follow the
same distribution. In fact, this is even true step-wise: at any point in time during Algorithm 2, MS contains the
greedy matching on samples restricted to the edges whose se is greater than the value being considered at that
specific time.

We conclude the proof by showing that the two versions of E′ coincide. Once we have that, it is enough to
observe that given the same fixed arrival order, the matchings M are extracted in the same way from E′. To this
end, consider an iteration of Algorithm 1 in which an edge e arrives in the online phase. We argue that e is added
to E′ in the offline procedure if and only if the online procedure does the same. Indeed, fix edge e = {u, v} added
to E′ by Algorithm 1. Then, the online version of MS contains no edges incident to u or v with larger sample
than re, because this would imply a price higher than re in at least one of the two endpoints. Since the MS are
the same in both algorithms, when Algorithm 2 considers e, it holds u, v ∈ V S (u and v are not yet matched in
MS) and Algorithm 2 will also add e. The other direction follows analogously.

Given the above result, we use in the following E′, MS and M mainly to refer to Algorithm 2, but the same
would apply to Algorithm 1.

Correctness and competitive analysis. The correctness of Algorithm 1 is guaranteed by the fact that
the algorithm never adds to M any edge incident to an already matched vertex. Thus, the set of collected edges
in M is a valid matching.

We now proceed in analyzing the competitive guarantee of our algorithm. In particular, we show that
Algorithm 1 is 16-competitive, namely, for any adversarial arrival order of the edges, the algorithm retains in
expectation at least a 1/16-fraction of the expected value of optimal offline matching OPT. The high level idea of
the proof lies in relating the optimal offline matching and our solution by using MS (which yields a 2-approximation
of OPT) and a carefully chosen subset of E′, the safe edges.

Definition 2.1. (safe edges) Let e = {u, v} be an edge incident to vertex v. We call e safe for v, if the
following conditions are met:

1. e is the only edge in E′ incident to v.

2. There is no edge in E′ that is incident to u and has smaller weight than re.

Let us denote ev as the edge incident to v in E′ of maximal reward (if such an edge exists in E′). We are
able to show the following convenient property for this edge being safe for v:

Lemma 2.1. For any vertex v and edge e incident to v for which the probability that ev = e is non-zero, we have
that

P[ev is safe for v | ev = e] ≥ 1

4
.

Proof. Recall than an edge is marked as R-used if its realized reward is greater than the corresponding sample.
In the opposite case, the edge is marked as S-used. By construction of Algorithm 2, E′ contains only R-used
edges. Consider now the time where some edge ev = e = {v, u} with value a is added to set E′. By definition of
ev, this is the first edge added in E′ that is incident to vertex v.

Consider now the next time where some edge e′ of value a′, incident to either u or v (or both), and such that
both endpoints of e′ are in V S , is parsed by Algorithm 2. We distinguish among the following cases:

Case 1: e′ = {v, u′}, where u′ 6= u. In this scenario, we have that e′ = {v, u′}, namely, e′ is incident to
vertex v but not u. We now show that, with probability at least 1/2, the first condition of Definition 2.1 is satisfied,
by considering two sub-cases: (a) In the case where e′ has been observed before (i.e., a′ is its second realization),
then e′ is R-used and, thus, a′ is a sample value. Indeed, if e′ were S-used, then at least one of the its endpoints
would no longer be in V S , a fact which would contradict the choice of e′. Therefore, since e′ is R-used and both
its endpoints are in V S by the time a′ is parsed, vertex v (the only common vertex between e and e′) is now

removed from V S and, thus, no other edge incident to v can be added in E′. Thus, ev must be the only edge in
E′ incident to u, as desired. (b) In the case where e′ has not been observed before by Algorithm 2, it is easy to
see that, with probability 1/2, e′ is S-used. Therefore, by the same argument as above, ev is the only edge in E′

incident to v.
Once the first condition of Definition 2.1 is satisfied, let e′′ = {u, u′′} be the next edge of value a′′ < a′ < a

that is parsed by Algorithm 4, such that u, u′′ ∈ V S . By repeating the exact same arguments as in the previous
paragraph, we can see that the second condition of Definition 2.1 will additionally be satisfied with probability
at least 1/2. Hence, we can see that the probability that ev is safe for v is at least 1/4.

Case 2: e′ = {v′, u}, where v′ 6= v. By exactly the same arguments, the above analysis can be replicated,
even if the first parsed edge after the time where ev is added to E′ is incident only to vertex u, but not v.

Case 3: e′ = {v, u}. In this case, e′ either corresponds to an edge parallel to ev, or to edge ev itself. If e′ is
a parallel edge to ev, then, by an analysis similar to the first case, both conditions are satisfied with probability
at least 1/2. On the other hand, if e′ coincides with ev (which is by definition R-used), then it can be verified that
ev is already safe for v (with probability 1).

Recall that ev is defined to be the maximal-reward edge among the edges in E′ incident to vertex v (if such
an edge exists). We denote by rev

the reward of such an edge, and we set rev
= 0 if such an edge does not exist.

Lemma 2.2. For any realization of the edge weights in A, we have

E

[

∑

v∈V

rev
1{ev is safe for v}

]

≥ 1

4
· E

[

∑

v∈V

rev

]

.

Proof. Let us fix any realization of A and assume w.l.o.g. that for each edge e ∈ E with realizations ae,1 and ae,2,
it holds ae,1 > ae,2. By linearity of expectations, in order to prove the Lemma, it suffices to show that for any
vertex v ∈ V , it holds E

[

rev
1{ev is safe for v}

]

≥ 1
4 · E [rev

].
It is not hard to verify that for each edge e ∈ E incident to vertex v, if e is safe for v, then re = ae,1, the

larger weight realization. Indeed, assuming that re = ae,2, the value ae,2 is parsed after ae,1 by Algorithm 2 and,
thus, it cannot be the case that e ∈ E′. Given this fact, we have

E
[

rev
1{ev is safe for v}

]

=
∑

e∈E

ae,1 · Pr [ev is safe for v and ev = e] .

Now, by using the result of Lemma 2.1, we have that

Pr [ev is safe for v and ev = e] = Pr [ev is safe for v | ev = e] · Pr [ev = e] ≥ 1

4
· Pr [ev = e] ,

thus, concluding that

E
[

rev
1{ev is safe for v}

]

≥ 1

4
·
∑

e∈E

ae,1 · Pr [ev = e] ≥ 1

4
· E [rev

] .

The Lemma follows by summing the above equation over all vertices v ∈ V and using linearity of expectation.

Lemma 2.3. In any run of Algorithm 2, for the expected reward collected in M , we have

E [w(M)] ≥ 1

2
· E

[

∑

v∈V

rev
1{ev is safe for v}

]

.

Proof. We first partition the set M ⊂ E′ into two sets MB and M ′. Informally, MB is the subset of edges
e = {u, v} in M that are safe for both endpoints u and v, whereas M ′ contains the rest of the edges in M .
Formally:

MB = {e = {u, v} ∈ M | e is safe for u and for v} and M ′ = M \ MB.

Similarly, we denote by V B the subset of vertices that are adjacent to some edge in MB, and by V ′ = V \ V B

the rest of the vertices.
Recall that, by definition of safe edges, each edge e = {u, v} in MB is the only edge that can be collected

by both endpoints u and v in the second phase of Algorithm 2. Further, since the weight of such an edge is
contributes to both its endpoints, it follows directly that

w(MB) =
1

2

∑

v∈V B

rev
1{ev is safe for v}.

Turning now our attention to the set M ′, consider any vertex v ∈ V ′ that is incident to some edge ev = {v, u}
that is safe for v but not for u. By definition of the safe edges, by the time this edge arrives in the second phase of
Algorithm 2, it is either collected by the algorithm, or another edge e′ = {u, u′}, incident to u, has already been
collected with reward re′ . However, since ev is safe for v, it has to be that re′ ≥ rev

, since no edge in E′ incident
to u has smaller reward than ev. Notice that e′ = {u, u′} cannot be safe for u, given that in the above scenario
E′ contains at least two edges incident to u, which violates Definition 2.1. Further, e′ cannot be safe for u′ either,
since E′ contains ev, which is incident to u and has reward smaller than re′ , violating the second condition of
Definition 2.1. Finally, adding any edge e to M ′ can make at most two safe edges infeasible: either the added
edge e was safe itself, or after adding e, we can no longer include any safe edges incident to its endpoints, each of
which has at most one safe, incident edge by definition. We can conclude that

w(M ′) ≥ 1

2

∑

v∈V ′

rev
1{ev is safe for v}.

By combining the above expressions, and since MB and M ′ (resp., V B and V ′) is a partition of M (resp., V).
we get

w(M) = w(MB) + w(M ′) ≥ 1

2

∑

v∈V

rev
1{ev is safe for v}.

The proof of the Lemma follows simply by taking expectation over the above expression.

Theorem 2.1. For the problem of finding a maximum-weight matching in a general graph G, in the online edge
arrival model, Algorithm 1 is 16-competitive in expectation, i.e.

16 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of an optimal matching in G.

Proof. First, we claim that the set E′ has expected weight at least w(MS)/2. We define valÊ(v) for v ∈ V , and

any weighted edge set Ê ⊆ E to denote the largest weight of an edge incident to vertex v in edge set Ê, or 0
if there is no such edge. We fix any vertex v ∈ V and consider the first time in the run of Algorithm 2, where
an edge e = {v, u} of value a arrives which is incident to v and, at that time, u ∈ V S . Note that in the case
where u /∈ V S , the edge cannot be added to neither E′ nor Ms. By construction of the offline algorithm and since
v ∈ V S , with probability 1/2 (i.e., the probability of the fair coin-flip), edge e is marked as R-used and it is added
in E′. At this point during the run of Algorithm 2, no matter the outcome of the fair coin flip, at most one edge
incident to v can be added to MS – either e with weight a, or some other edge e′ of weight smaller than a. Thus,
for any v ∈ V , we have that E [valE′(v)] ≥ 1

2 · E [valMS
(v)], which, by linearity of expectation implies that

E

[

∑

v∈V

rev

]

= E

[

∑

v∈V

valE′(v)

]

≥ 1

2
E

[

∑

v∈V

valMS
(v)

]

= E [w(MS)] .

Now, by combining Lemmas 2.2 and 2.3, for the expected reward collected in M

E [w(M)] ≥ 1

2
· E

[

∑

v∈V

rev
1{ev is safe for v}

]

≥ 1

8
· E

[

∑

v∈V

rev

]

≥ 1

8
· E [w(MS)] ≥ 1

16
· E [OPT] ,

where in the last inequality we use the fact that w(MS) has the same distribution as the value of the greedy
solution with respect to the rewards, which in turn is a 2-approximation of the optimal matching.

3 Vertex Arrival in Bipartite Graphs

We now consider the case of SSPI matching on bipartite graphs with vertex arrivals. More specifically, we consider
a bipartite graph G = (B ∪ I, E), where B is the set of left vertices, which we refer to as “buyers”, and I is the set
of right vertices, which we refer to as “items”. We remark that even though there is no incentive analysis in this
section, a truthful version of our results, with slightly worse approximation guarantees, is presented in Section 3.2.
Every edge e = {b, i} between buyer b ∈ B and item i ∈ I is associated with an independent distribution De.
In the offline phase, the gambler receives a single sample S from the product distribution of edge weights. In
the online phase, buyers arrive sequentially and in adversarial order, while the gambler observes simultaneously
the rewards of all edges incident to the arriving buyer. At each time, the gambler decides irrevocably whether
to match the buyer to some unmatched item, or skip. The objective is to maximize the total expected reward
collected by the buyers, against that of a prophet who can compute a max-weight matching w.r.t. the rewards R.

In this section, we first provide a O(1)-competitive SSPI for the above model. Then, we show how our
algorithm can be translated into a truthful mechanism where buyers are incentivized to report the true reward for
each item. Finally, we show how our analysis extends to the case where the weights of the all the edges incident to
the same buyer are identical (i.e., buyer-dependent), which allows us to provide an SSPI of improved competitive
guarantee for the case of transversal matroids.

3.1 Main algorithm and analysis Our algorithm for this case operates in a similar manner as that of
Section 2. As before, the sample S is used to calculate prices on both sides: items (fixed side vertices) have prices
to protect them from being sold too cheaply, while buyers (incoming vertices) have prices they need to beat in
order to participate in the market, in addition to beating the item prices.

Algorithm 3: Bipartite Prophet Matching with Vertex-Arrivals

Set E+ = ∅, M = ∅
Compute a greedy matching MS on the graph with edge weights S = {se | e ∈ E}
for each e = {b, i} ∈ MS do

Set pi = pb = se

for each vertex k not matched in MS do
Set pk = 0.

for each arriving buyer b ∈ B do
Let ê = {b, i∗} = arg max{re | e = {b, i} and re ≥ max{pb, pi}}
Add ê to E+ with weight rê // Only used for the analysis.

if i∗ is not matched in M then
Add {b, i∗} to M with weight rê

return M

We provide some intuition on the objects of interest that appear in the pseudo-code of Algorithm 3. We
denote by MS the greedy matching on the S graph, while by E+ the set of edges of maximum reward (greater
than their thresholds) for each arriving buyer b ∈ B. Let M be the matching returned by the algorithm on the
edges of E+, where conflicts are solved in favor of the first arriving edge. Note that M is computed in an online,
adversarial ordering.

Equivalent offline algorithm. In order to relate the weight of E+ and M with the prophet’s expected
reward, similarly to the previous section, we consider an offline version of the algorithm, which exhibits the same
distribution over the relevant sets, and can be analyzed more easily. Indeed, Algorithm 4 interleaves the building
of a greedy matching MS with that of the allocation E+. While all the values are drawn in advance, they are
assigned to S and R only upon arrival. Using similar arguments as in the proof of Claim 2.1, we establish the
following equivalence:

Claim 3.1. The sets E+, MS and M are distributed the same way when computed by Algorithm 3 as when
computed by Algorithm 4.

Correctness and competitive analysis. The correctness of Algorithm 3 is guaranteed since only edges in
E+ can be added in M , E+ contains at most one edge for each buyer, and the algorithm never assigns an item
to more than one buyers. Hence, the set of collected edges in M is a valid matching.

We now analyze the competitive guarantee of our algorithm. In particular, we show that Algorithm 3 is
8-competitive. As in Section 2, the main idea of the proof is to relate the weight of the optimal offline matching,
MS, with the matching collected by our algorithm, M , using a carefully chosen subset of E+, the safe edges.

Definition 3.1. We call an edge e = {b, i} ∈ E safe for buyer b if the following conditions are true:

1. e is the only edge in E+ incident to buyer b.

2. There is no edge in E+ that is incident to item i and has smaller weight than re.

As in Section 2, we denote eb ∈ E+ the edge incident to buyer b, among those in E+, if such an edge exists,
in a run of Algorithm 4. Additionally, we fix a realization of A, b ∈ B, and e ∈ E for which the probability that
eb = e is non-zero.

Algorithm 4: Offline Simulation for Bipartite Matching with Vertex-Arrivals

Set E+ = ∅, MS = ∅, M = ∅, BS = BR = B, and IS = I
For each e ∈ E, draw from De two values ae,1 and ae,2

Order A = {ae,1, ae,2 | e ∈ E} in a decreasing fashion
for each value a ∈ A in the above order do

if a corresponds to edge e = {b, i} that has never been observed before then
Flip a fair coin
if Heads then

Mark e as R-used

if b ∈ BR and i ∈ IS then
Add e to E+ with weight a

Remove b from BR

else
Mark e as S-used

if b ∈ BS and i ∈ IS then
Add e to MS with weight a

Remove b from BS and BR, and i from IS

else if a corresponds to an edge e = {b, i} which is R-used, b ∈ BS and i ∈ IS then
Add e to MS with weight a

Remove b from BS and i from IS

for each e in the same order as Algorithm 3 do
if e ∈ E+ and {e} ∪ M is a matching then

Add e to M with weight re

return M .

Lemma 3.1. For any buyer b ∈ B and edge e incident to b for which the probability that eb = e is non-zero, we
have that

Pr [eb is safe for b | eb = e] ≥ 1

2
.

Proof. As in the proof of Lemma 2.1, we note that an edge is marked R-used if its realized reward is greater than
the corresponding sample, and otherwise is marked as S-used. By construction, Algorithm 4 only adds R-used
edges to E+. Let us consider the time in the greedy ordering when eb = e = {b, i} is added to set E+. By
definition of eb, this is the first time an edge incident to buyer b is added to E+. Additionally, by construction
of the algorithm, this must be the only edge corresponding to buyer b which is added to E+. Thus, the first
condition of Definition 3.1 is satisfied by construction.

Now, let us consider the next time in the greedy ordering when an edge e′ = {b′, i} with weight a′ is parsed
by the algorithm, b′ ∈ BS , and i ∈ IS (indeed, if b′ 6∈ BS or i 6∈ IS , then e′ could not be added to either E+ or

MS). If this is the second time that e′ has been processed by the algorithm, then it must be the case that e′ is
R-used (since, otherwise, we get a contradiction to the choice of eb), and hence, a′ is a sample value. At this time,
b′ is removed from BS and i from IS , so no other edges incident to item i can be added to E+ after this point.
Thus, in this case, both conditions of Definition 3.1 are satisfied. Now, in the case when e′ is being processed for
the first time, we have that, with probability 1/2, e′ is S-used, thus guaranteeing that, by similar arguments as
above, both conditions of Definition 3.1 are satisfied.

Lemma 3.2. For any fixed realization of edge weights A, we have

E

[

∑

b∈B

reb
1{eb is safe for b}

]

≥ 1

2
· E

[

∑

b∈B

reb

]

.

Proof. The proof follows by the exact same arguments presented in Lemma 2.2, replacing the application of
Lemma 2.1 with Lemma 3.1.

Lemma 3.3. In any run of Algorithm 4, for the expected reward collected in M , we have

E [w(M)] ≥ E

[

∑

b∈B

reb
1{eb is safe for b}

]

.

Proof. The proof proceeds in a similar fashion to that of Lemma 2.3 for the case of general matching with edge-
arrivals. Consider any fixed buyer b, and suppose that the edge eb = {b, i} is safe for b. We prove that either
Algorithm 3 collects reb

, or there exists some other buyer b′ and edge e′ = {b′, i} collected by Algorithm 3 such
that (i) e′ = eb′ , (ii) re′ > reb

, and (iii) eb′ cannot be safe for buyer b′. The above three conditions, combined
with the fact that, by definition, Algorithm 3 only collects edges in E+, and that each buyer can preclude the
collection of at most one safe edge, imply the following stronger version of the claimed inequality:

w(M) ≥
∑

b∈B

reb
1{eb is safe for b}.

To prove (i), we simply note that, by definition of Algorithm 3, for each buyer b′, either eb′ is collected, or no edge
adjacent to b′ is collected. Claim (ii) follows by Definition 3.1 and the fact that only edges in E+ can be collected
by Algorithm 3. To establish (iii), observe that, by Definition 3.1, edges e′ and eb cannot be simultaneously safe,
as they are incident to the same item i.

Theorem 3.1. For the problem of finding a maximum-weight matching in a bipartite graph G in the online vertex
arrival model, Algorithm 3 is 8-competitive in expectation, i.e.,

8 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of an optimal matching in G.

Proof. First, observe that, by following the exact same arguments as in Theorem 2.1, E [w(E+)] ≥ 1/2·E [w(MS)] ≥
1/4 · E [OPT]. Hence, combining Lemmas 3.2 and 3.3,

E [w(M)] ≥ E

[

∑

b∈B

reb
1{eb is safe for b}

]

≥ 1

2
· E

[

∑

b∈B

reb

]

=
1

2
· E

[

w(E+)
]

≥ 1

8
· E [OPT] .

3.2 Truthful Bipartite Matching For the same model as above, with buyers on the left side of G arriving
online and items on the right side available offline, we design an incentive-compatible version of our prophet
inequality. The difficulty is that our 8-approximation in Theorem 3.1 relies on each buyer choosing the largest
incident edge that beats an item’s price. However, this item need not correspond to the item of highest utility to
the buyer. Indeed, the price for this item might be much closer to the buyer’s value than for other items. In this

case, a buyer might prefer to purchase an item which she values significantly less, in order to maximize her utility.
For this reason, we cannot expect to show any competitive guarantee for the utility of the returned solution.

Clearly, a different approach is needed. We use a pricing-based algorithm that does not rely on restricting the
buyer’s choice of item (among those with feasible prices that are still available). Instead, we ensure a sufficient
weight for the resulting matching solely via appropriate thresholds for each buyer and item: this can be seen as
doing a worst-case analysis over all threshold-feasible edges instead of choosing a good subset of them, explaining
the incurred loss in the approximation. This allows us to make another small change and, among all threshold-
feasible items, always assign the utility-maximizing one. In turn, the routine becomes truthful, and we have to
mainly care about showing the approximation.

Our strategy for setting the aforementioned thresholds can be interpreted as follows. Assume we take as a
starting point not our prophet inequality for the bipartite case, but the one for general graphs with edge arrivals.
Obviously, arrival orders for the bipartite one-sided model we consider here are highly restricted compared to
general edge-arrival. However, assuming the graph is bipartite, each arriving edge consists of exactly one buyer b
and one item i. Then, Algorithm 1 assigns prices pb and pi, where pb corresponds to the aforementioned buyer’s
threshold we are planning to use.

Our mechanism works as follows: we determine greedy prices on the sample graph for all vertices just as
described above. When a buyer b arrives, we present her not with the greedy price of each item, but instead
charge for each item i the maximum over pi and pb. Then, we let the buyer choose what she likes best, i.e. we
assign a utility-maximizing item.

Algorithm 5: Truthful Bipartite Prophet Matching

Set M = ∅
Compute the greedy matching MS on the graph with edge weights according to sample S for all
e = {b, i} ∈ MS do

Set pb = pi = se

for all vertices k not matched in MS do
Set pk = 0

for each arriving buyer b ∈ B do
Set F (b) = {e = {b, i} | re ≥ max{pb, pi} and i is not matched in M}
Set ẽ = {b, i∗} = arg max{re − max{pb, pi} | e = {b, i} ∈ F (b)}
Add ẽ to M with weight rẽ

Charge buyer b a price of max{pb, pi∗}
return M

Here, MS is again a greedy matching on the sample graph. As before (we omit this part of the analysis
because it is analogous), one can imagine an offline version of Algorithm 5 that simply draws two values for each
edge, and then goes through their set A in non-increasing order, deciding for each value considered whether it
belongs to R or S (if this was not yet decided by the twin value for the same edge). We are able to prove the
following result for Algorithm 5:

Theorem 3.2. For the problem of finding a maximum-weight matching in a bipartite graph G in the online vertex
arrival model, Algorithm 5 is truthful and 16-competitive in expectation, i.e.,

16 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of an optimal matching in G.

Proof sketch. Truthfulness is immediate: on arrival, the unmatched items are offered to the buyer for prices
determined independently of the buyer’s values, and she is assigned one that is maximizing her utility. By
misreporting, her utility can therefore only become worse.

The competitive analysis of the Algorithm 5 follows directly from the analysis of our algorithm for the
matching problem on general graphs with edge-arrivals, Algorithm 1, since that analysis holds for any (adversarial)
edge arrival order. See Appendix A for additional details.

3.3 Transversal Matroids We now show how our algorithm and analysis for the vertex-arrival model can be
easily modified to yield an 8-competitive algorithm for the case of a transversal matroid. Recall that, given an
undirected bipartite graph G = (B ∪I, E), a transversal matroid is defined over the ground set of buyers B, where
a set S ⊆ B is independent (i.e., feasible) if the vertices of S can be matched in G with a subset of the set of
items I. Each buyer b ∈ B is associated with a weight wb drawn independently from distribution Db, and every
edge incident to buyer b inherits this weight.

We modify our algorithm for bipartite matching, Algorithm 3, to obtain an analogous SSPI for the setting of
transversal matroids, Algorithm 6.

Algorithm 6: Transversal Matroid

Set E+ = ∅, M = ∅
Choose an arbitrary ordering on the items of I // For breaking ties within each buyer.

Compute a greedy matching MS on the graph with edge weights according to sample S = {sb | b ∈ B},
breaking ties for each buyer according to the ordering on I

for each e = {b, i} ∈ MS do
Set pb = pi = sb

for each vertex k not matched in MS do
Set pk = 0

for each arriving buyer b ∈ B do
Let i∗ be the first item in the ordering on I such that rb ≥ max{pb, pi∗} and {b, i∗} ∈ E
Add ê = {b, i∗} to E+ with weight rê // Only used for the analysis.

if i∗ is not matched in M then
Add ê to M with weight rê

return M

In the vertex-arrival model for bipartite graphs, we assumed that the distribution of all edges is product form,
even for the edges corresponding to a single buyer. We emphasize that it is not clear, in general, how to extend
our techniques to allow for arbitrary correlation between edges of a single buyer. Indeed, since the definition of the
set A in Algorithm 4 crucially assumes that the distribution of all edges is product form, and if the edge weights
for each buyer were not independent, then the equivalence between the offline and online algorithms proved in
Claim 3.1 no longer holds. However, our technique extends directly to a special type of correlation structure
induced by the transversal matroid – the one where each buyer has the same weight for each item in its edge set.

By extending the arguments used to show Theorem 3.1, we can establish the following guarantee for this
setting:

Theorem 3.3. For the problem of finding a maximum-weight independent set in a transversal matroid M,
Algorithm 6 is 8-competitive in expectation, i.e.,

8 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of a maximum-weight independent set in the transversal matroid M.

Proof sketch. The proof follows via careful modifications to the arguments used for Theorem 3.1: we construct
a version of the offline algorithm where set A is a set of 2|B| buyer weights (as opposed to 2|E| edge weights in
Algorithm 4). With this modification to the offline algorithm, the equivalence to Algorithm 6 follows analogously
to before. The remaining proofs rely largely on the same probabilistic arguments as for the matching case, which
primarily depend on the independence of edge weights for different buyers. We refer the reader to Appendix A
for additional details.

4 Budget-Additive Combinatorial Auctions

We now consider a special case of combinatorial auctions, where the buyers have budget-additive valuations.
Specifically, each buyer b ∈ B values every item i ∈ I at some fixed value vb(i), drawn independently from a
distribution for every item-buyer pair. However, once the total reward collected by a buyer b has reached a certain

budget Cb, additional items have no marginal contribution any more. More formally, we define vb(I ′) for any
I ′ ⊆ I as

vb(I
′) = min

{

∑

i∈I′

vb(i), Cb

}

.

We assume the budgets Cb to be fixed beforehand and known to the algorithm. Without loss of generality,
we further assume that for all i ∈ I and all b ∈ B, vb(i) ≤ Cb (otherwise, we may pre-process those valuations
exceeding Cb to have weight exactly Cb).

Similarly to Section 3, we assume that buyers arrive in an online adversarial order. Each time a buyer arrives,
we observe the reward realizations of the buyer for all the items, and we can assign to her any collection of items
that are not already assigned to a different buyer. Equipped with a single sample se for each buyer-item edge
e = {b, i}, the goal is to maximize the expected reward collected against that of a prophet who knows all the
reward realizations beforehand, and simply chooses the optimal assignment.

Our algorithm uses the following routine to compute a near-optimal solution GS using the samples S. It
starts by sorting in decreasing order the sample values S = {v1, v2, . . . }, then, in that order, each edge is added to
the solution GS (i.e., an item is assigned to a buyer) whenever the item is available (i.e., has not been previously
assigned) and its allocation does not exceed the according buyer’s budget. When, for the first time, the algorithm
tries to add an item to buyer b’s bundle that would exceed her budget, then buyer b becomes blocked forever and
cannot collect any more items (including the current one). We remark that, in the above greedy routine, items
are only collected if their marginal contribution equals their value.

Once this greedy solution GS is computed on the samples, our algorithm uses it to decide on the online
allocation. In particular, we associate to each item i a threshold τi corresponding to the value of the buyer that
gets the item in GS , or to zero if i is unallocated. Every time a new buyer b arrives in the online phase, the items
for which b’s valuation beats the threshold, and which are still not allocated (in the actual solution M , not in
GS) are considered in decreasing order of b’s weights. Each element is then actually allocated if it fits the buyer’s
budget in both M and in GS . While it is clear what we mean by saying that the element fits in M , we need
to specify what it means to say it also fits in GS : when a buyer-item pair e = {b, i} with value a is considered,
which beats τi and fits into the budget of b in M , the algorithm computes CS(b, a), i.e. the total value of the
items allocated to b in GS restricted to only items with larger value than a. Then the item is actually allocated if
and only if CS(b, a) + a ≤ Cb, and buyer b is not blocked in GS after considering all samples larger than a. The
formal pseudocode is given in Algorithm 7.

Algorithm 7: Budget-Additive Combinatorial Auctions

Set E′ = ∅, M = ∅
Set CR(b) = 0 for each buyer b ∈ B
Compute the greedy solution GS with edge weights according to sample S = {se | e ∈ E}
Let CS(b, a) denote the total weight assigned to buyer b in GS , after processing edges of sample-weight
larger than a, or Cb in the case where buyer b is already blocked in GS after considering all edges of
sampled weight larger than a.

for each e = {b, i} ∈ GS do
Set τi = se

for each item i not assigned in GS do
Set τi = 0

for each arriving buyer b ∈ B do
for each edge e = {b, i} ∈ E with weight re, in decreasing order of weight do

if re > τi and re + CS(b, re) ≤ Cb then
Add e to E′ with weight re // Only used for the analysis.

if re + CR(b) ≤ Cb and i has not yet been assigned in M then
Set CR(b) = CR(b) + re

Add e to M with value re
return M

Equivalent offline algorithm. Following the usual proof technique, we state in Algorithm 8 an offline
procedure that is easier to analyze and is equivalent to the online one.

Algorithm 8: Offline Simulation for Budget-Additive Combinatorial Auctions

Set E′ = ∅, GS = ∅, M = ∅, IS = ∅
Set CS(b) = CR(b) = 0 for each b ∈ B
For each e ∈ E, draw from De two values ae,1 and ae,2

Order A = {ae,1, ae,2|e ∈ E} in a decreasing fashion
for each value a ∈ A in the above order do

if a corresponds to an edge e = {b, i} that has never been observed before then
Flip a coin
if Heads then

Mark e as R-used

if a + CS(b) ≤ Cb and i ∈ IS then
Add e with value a to E′

else
Mark e as S-used

if i ∈ IS then
if a + CS(b) ≤ Cb then

Set CS(b) = CS(b) + a
Add e to GS with value a

Remove i from IS

else
Set CS(b) = Cb

else if a corresponds to an edge e = {b, i} which is R-used and i ∈ IS then
if a + CS(b) ≤ Cb then

Set CS(b) = CS(b) + a
Add e to GS with value a

Remove i from IS

else
Set CS(b) = Cb

for each e = {b, i} in the same order as Algorithm 7 do
if e ∈ E′, a + CR(b) ≤ Cb, and i has not been assigned in M then

Add e to M with value a
Set CR(b) = CR(b) + a

return M .

We start by noting that the two algorithms retain the same sets of interest. The proof of this claim follows
using similar arguments as in Claims 2.1 and 3.1, and is given in Appendix A.

Claim 4.1. The sets E′, GS , and M are distributed the same way when computed by Algorithm 7 as when
computed by Algorithm 8.

Correctness and competitive analysis. The correctness of Algorithm 7 follows by the fact that the
algorithm never assigns a single item to more than one buyer.

We focus now on the analysis of the competitive guarantee of our policy. For any set of (weighted) edges Ê,
we denote by Ê(b) the (weighted) subset of edges in Ê that are incident to buyer b. As a first step, we establish
that the greedy assignment GS is a constant-approximation to the maximum-weight assignment:

Lemma 4.1. The solution GS computed on the set of samples S is a 3-approximation to the optimal assignment
over S.

Proof. Let us denote by OPT(b) the items assigned to buyer b in an optimal assignment, and v∗
b (i) the value buyer

b realizes from item i in OPT. Note that every buyer might (w.l.o.g.) have at most one fractional item ib in his
OPT-bundle, where, in that case, v∗

b (ib) denotes only a fraction of vb(ib), accordingly.
We compute our greedy solution GS in a way that might miss out on some of the value realized in OPT. Let’s

focus on a buyer b and OPT(b). For any i ∈ OPT(b), one of the following cases is true:

1. i is also part of b’s greedy bundle GS(b).

2. i is part of some other buyer’s GS(b′), and vb′(i) ≥ v∗
b (i).

3. i is assigned for a lower value than in OPT, or not assigned at all.

Let us call items for which these cases hold I1, I2 and I3, accordingly. The value OPT(I1) realized on items of the
first case is clearly at most that realized by GS(I1), since the marginal contribution of each item in GS always
equal to its value. Further, for the same reason as above, together with the fact that each item in I2 gets a better
value in GS , it follows that OPT(I2) ≤ GS(I2). Finally, in order to conclude the proof, it suffices to bound the
loss incurred due to the items in I3. If i ∈ I3, i ∈ OPT(b), then at the point where value vb(i) is considered by
the greedy, either (i) item i is no longer available, or (ii) buyer b is blocked, or (iii) adding vb(i) would exceed Cb.
Clearly, case (i) cannot be true, since if i had been already assigned by GS , then because of the decreasing order
where the greedy algorithm parses the edge, item i would have been in I2. Therefore, it has to be that either b’s
budget was running full, or b was blocked. In both cases, and again due to the decreasing order of consideration,
GS(b) ≥ Cb

2 .
Now, let us write the value realized by OPT on item set I ′ ⊆ I as OPT(I ′). According to the previous

considerations, we get

w(GS) ≥ OPT(I1) + OPT(I2), and w(GS) ≥ 1

2
· OPT(I3)

because buyers with any I3-items in OPT(b) have at least half-full budget. Together, this yields

GS ≥ max

{

(OPT(I1) + OPT(I2)),
1

2
OPT(I3)

}

≥ min
g,f≥0:g+f=1

max

{

g,
f

2

}

· OPT =
1

3
OPT.

In the above algorithm, E′ is the (weighted) set of all edges with a reward greater than the according
item threshold, which are also considered before the according buyer is blocked in GS . Note that similarly to
previous proofs, and due to the fact that conditions for adding an element to E′ or GS are exactly the same,
E[w(E′)] ≥ 1

2 · E[w(GS)]: this is true because every edge considered for the first time lands in both sets equally
likely, and an edge considered for the second time can only be added to GS , but then with at most the same value
as its first occurrence.

As in the previous sections, the proof of our claim relies on constructing a special subset of the edges in E′,
called the safe edges:

Definition 4.1. We call an edge e = {b, i} ∈ E safe for buyer b if the following conditions are true:

1. Edge e is in E′ with some weight re.

2. There is no edge in E′ that is incident to item i and has weight smaller than re.

However, opposed to our earlier proofs, being safe in the sense of belonging to Esafe = {e ∈ E′ | ∃ b ∈
B s.t. e is safe for b} does not suffice for us to recover an edge in the actual SSPI: still, it might happen that at
the point where buyer b arrives, edge e = {b, i} cannot be (fully) realized because Cb is exceeded. Indeed, we
will only be able to extract the value from Esafe that does not exceed the capacity Cb of each buyer b. To bound
this, we will have to intersect Esafe with a (weighted) set E+, which incorporates the capacity constraints for each
buyer b:

E+(b) =

a ∈ E′(b) | a +
∑

a′∈E′(b), a′>a

a′ ≤ Cb

.

We now show a crucial property of E+ – namely, that its expected weight can be lower-bounded using that
of the greedy solution, GS :

Lemma 4.2. Let GS be the greedy matching on the set of samples. Then,

E
[

w(E+)
]

≥ 1

4
· E [w(GS)] .

Proof. For any fixed value realization A and any buyer b, we define

X(b) = {(e, a) ∈ GS(b) ∪ E′(b) | a is the larger value drawn for e in A} .

where the tuple (e, a) refers to adding edge e with a weight w(e) = a. Informally, for each buyer b, the set X(b)
contains all the values ae,1 (i.e., the larger realization) for each edge e ∈ GS(b) ∪ E′(b).

Note that deterministically, w(X) ≥ w(GS), since for every edge e ∈ GS that is weighted with the smaller
realization ae,2, it has to be that ae,1 belongs to E′ and, thus, also belongs to X . Further, we define

X+(b) =

(e, a) ∈ X(b) | a +
∑

(e,a′)∈X(b), a′>a

a′ ≤ Cb

.

as the subset of weighted edges (e, a) ∈ X(b) such that a, together with all weights a′ > a in X(b), does not
exceed the capacity Cb of buyer b.

Given the above definitions, our proof consists of showing that, for any buyer b ∈ B, it holds
(i) E [w(X+(b))] ≥ 1

2 · E [w(GS(b))] and (ii) E [w(E+(b))] ≥ 1
2 · E [w(X+(b))].

In order to show (i), we first rewrite the expected weight of X+(b), for any buyer b, as

E
[

w(X+(b))
]

= Pr [w(X(b)) > Cb] · E
[

w(X+(b)) | w(X(b)) > Cb

]

+ Pr [w(X(b)) ≤ Cb] · E
[

w(X+(b)) | w(X(b)) ≤ Cb

]

.

Now if at some point, an edge with value a was added to X(b) that made its weight exceed Cb, at this point in
time it already was true that w(X+(b)) ≥ Cb

2 , due to decreasing order. Thus, it follows that

E
[

w(X+(b))
]

≥ Pr [w(X(b)) > Cb] · Cb

2
+ Pr [w(X(b)) ≤ Cb] · E

[

w(X+(b)) | w(X(b)) ≤ Cb

]

.

Recall that, independently of the realization of A and the random coin flips, it holds w(GS(b)) ≤ w(X(b)).
Thus, since the sets X(b) and X+(b) are identical in the case that X(b) ≤ Cb, it follows that

E
[

w(X+(b)) | w(X(b)) ≤ Cb

]

= E [w(X(b)) | w(X(b)) ≤ Cb] ≥ E [w(GS(b)) | w(X(b)) ≤ Cb] .

In addition, it holds (since our greedy routine ignores partial items) w(GS(b)) ≤ Cb, thus also
E [w(GS(b)) | w(X(b)) > Cb] ≤ Cb, and therefore

E
[

w(X+(b))
]

≥ Pr [w(X(b)) > Cb] · 1

2
· E [w(GS(b)) | w(X(b)) > Cb]

+ Pr [w(X(b)) ≤ Cb] · E
[

w(X+(b)) | w(X(b)) ≤ Cb

]

≥ 1

2
· E [w(GS(b))] .

Now in order to prove statement (ii), we fix some realization of A, some value a ∈ A, and some run of the offline
algorithm up to the point where a is considered. Note that if a is the weight of the second occurrence of the
according edge, it will not be considered for X(b) or E′(b). However if it is the first and price-feasible, it is
added to X(b) with probability 1 (as it is added to either GS or E′), and to E′(b) with probability 1

2 . Now, if
(e, a) ∈ X(b) ∩ X+(b), then still, it is added also to E′(b) and therefore, E+(b), with probability 1

2 . Thus, it
follows that E [w(E+(b))] ≥ 1

2 · E [w(X+(b))].
The proof of the Lemma follows by combining inequalities (i) and (ii).

Next, we lower bound the probability that an edge e = {i, b} ∈ E+ is safe for buyer b:

Lemma 4.3. For any buyer b ∈ B and edge e = {b, i} which is in E+ with non-zero probability, we have that

Pr
[

e is safe for buyer b | e = {b, i} ∈ E+
]

≥ 1

2
.

Proof. Consider the time when, during a run of Algorithm 8, e is added to E+. By construction, the algorithm
only adds edges which are R-used and are being processed for the first time.

Now, consider the next time when an edge e′ = {b′, i} is being considered by the algorithm with weight a
which allows it to be allocated in GS . Now, if e′ is being processed for the second time, then it must be R-used
and added to GS (and thus, at this point, i is removed from IS). Thus, in this case, no other edge e′′ = {b′′, i}
with value smaller than re could be added to E+, guaranteeing that both conditions of Definition 4.1 are satisfied.
In the case when e′ is processed for the first time, then, with probability 1/2, e is S-used and added to GS , again
guaranteeing that no other element of smaller weight is added to E+, and thus that the conditions of Definition 4.1
are satisfied.

Lemma 4.4. Recall that Esafe is the set of edges e = {b, i} ∈ E′ which are safe for some buyer b. Then,

E
[

w(Esafe ∩ E+)
]

≥ 1

2
· E

[

w(E+)
]

.

Proof. Here, the argument is essentially the same as in Lemma 2.2, replacing the use of Lemma 2.1 with
Lemma 4.3. In particular, note that, taking (without loss of generality) ae,1 to be the larger realization of
the edge weight for e,

E
[

w(Esafe ∩ E+)
]

= E

∑

e={b,i}∈E+

re · 1{e is safe for b}

 =
∑

e={b,i}∈E

ae,1 · Pr
[

e is safe for b, e ∈ E+
]

.

Thus, by Lemma 4.3,

Pr
[

e is safe for b, e ∈ E+
]

= Pr
[

e is safe for b | e ∈ E+
]

Pr
[

e ∈ E+
]

≥ 1

2
· Pr

[

e ∈ E+
]

.

By combining these two results, we conclude that

E
[

w(Esafe ∩ E+)
]

≥ 1

2

∑

e={b,i}∈E

ae,1 · Pr
[

e ∈ E+
]

= E
[

w(E+)
]

,

as desired.

Lemma 4.5. Let M be the assignment obtained in a run of Algorithm 8. Then,

E [w(M)] ≥ E
[

w(Esafe ∩ E+)
]

.

Proof. We prove a stronger result – namely, for any run of Algorithm 8, w(M) ≥ w(Esafe ∩ E+). Consider any
edge e = {b, i} ∈ E+ which is safe for buyer b. By construction of the set E+, and since edges in E′ are processed
in decreasing order of weight, when e is processed by the algorithm, it must be the case that either e is added to
M , or some other edge e′ = {b′, i} ∈ E′ was already chosen incident to item i before edge e was processed during
the online phase (since the algorithm only accepts items in the set E′). We emphasize here that by definition and
due to the weight-decreasing order, an edge e = {b, i} ∈ E+ can never be rejected because it exceeds the buyer’s
capacity Cb. Since e is safe for buyer b , and since Algorithm 8 never collects truncated rewards by construction ,
it must be the case that re′ > re. Therefore, e′ cannot be safe for buyer b′, since the second condition Definition 4.1
is violated by edge e. Hence, for any run of Algorithm 8 for which e is safe for buyer b, an element of weight at
least re is collected in M . By aggregating this result for all edges in E+, we reach the desired result.

Theorem 4.1. For the problem of finding a maximum-weight assignment in a budget-additive combinatorial
auction in the online vertex arrival model, Algorithm 7 is 24-competitive in expectation, i.e.,

24 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of a maximum-weight assignment.

Proof. Combining the results of Lemma 4.5 and Lemma 4.4, we can relate the expected reward collected by
Algorithm 7 with that collected by E+:

E [w(M)] ≥ E
[

w(Esafe ∩ E+)
]

≥ 1

2
· E

[

w(E+)
]

.

Then, combining the result of Lemma 4.2, which allows us to relate the expected weights of E+ and the greedy
solution with respect to the samples, GS , with Lemma 4.1, which relates the expected weights of the greedy and
optimal solutions, we have that

E
[

w(E+)
]

≥ 1

4
· E [w(GS)] ≥ 1

12
· E [OPT] .

Combining these results, we conclude that

E [w(M)] ≥ 1

24
· E [OPT] ,

as claimed.

5 From α-Partition to Single-Sample Prophet Inequalities

In this section, we turn our attention to the SSPI problem under matroid feasibility constraints. We show how
the recent work of Rubinstein et al. [2020] can be applied on an interesting class of matroids that satisfy a certain
property, called α-partition. For this class, we provide improved competitive guarantees (essentially by a factor of
2) for the SSPI problem, comparing to those following from the reduction to OOS, presented in Azar et al. [2014].

We refer to a matroid M = (E, I) over a ground set E as a simple partition matroid5, if there exists some
partition

⋃

l∈[k] El of E such that I ∈ I if and only if |I ∩ El| ≤ 1 for each l ∈ [k]. In other words, a set is
independent only if it contains at most one element from each set of the partition.

We consider the following property of several matroids, called α-partition:

Definition 5.1. (α-Partition Property (slightly adapted from [Babaioff et al., 2009])) A ma-
troid M = (E, I) satisfies an α-partition property for some α ≥ 1 if for any weight vector w on the elements,
after sequentially observing the weight of a (possibly random) subset S ⊂ E of the elements selected independently
of the weights, one can define a simple partition matroid M′ = (E′, I ′) on a ground set E′ ⊆ E \ S, such that

E

[

max
I′∈I′

w(I ′)

]

≥ 1

α
· max

I∈I
w(I) and I ′ ⊆ I,

where the expectation is taken over any randomness in the partitioning procedure.

In fact the above definition is a slight adaptation of one in [Babaioff et al., 2009]. Specifically, we additionally
capture the case where the transformation may observe the weight of a subset S ⊂ E of the elements, and that
this S is never included in the ground set of the produced partition matroid. Notice that the above definition also
permits transformations that do not depend on the weights of any sample (i.e., S = ∅), or that are deterministic.

We prove the following meta-theorem for any matroid with an α-partition property:

Theorem 5.1. For any matroid M that satisfies an α-partition property for some α ≥ 1, there exists a 2α-
competitive policy for the corresponding SSPI problem. Further, if the α-partitioning can be performed in
polynomial time, then the policy is also efficient.

Proof. Given any matroid M = (E, I) which satisfies an α-partition property, we describe how to construct a
simple 2α-competitive policy for the SSPI on M. The policy proceeds in two phases: (Offline phase) We construct
a simple partition matroid M′ = (E′, I ′) from M, using its α-partition property. For each element e ∈ S ⊂ E
that needs to be observed by the transformation, we feed the corresponding sample se. Let

⋃

l∈[k] El = E′ be the

5We use the term “simple” in order to distinguish the partition matroid from its common definition, where, from each set El of
the partition, more than one element might be collected.

constructed partition. For each group El of M′, we set a threshold τl = maxe∈El
se, equal to the value of the

largest sample of the elements included in El. Finally, we initialize I = ∅. (Online phase) For each element e ∈ E
arriving in adversarial order, we immediately reject it (without even observing the associated reward), if e /∈ E′.
Otherwise, assuming that e ∈ El for some l ∈ [k], we accept e and add it to I if and only if (i) I ∩ El = ∅ (i.e., no
other element in El has been accepted so far) and (ii) the reward satisfies re > τl.

We now show that the above policy is 2α-competitive for the SSPI problem on M. First observe that, by
construction of the policy, the set of elements collected satisfies I ∈ I′ and, thus, I ∈ I by definition of the α-
partition property. In order to establish the competitiveness of the policy, we first note that the maximum-reward
independent set of M′ is simply the collection of maximum-reward elements in each group of the partition. Notice
further that the online phase of our policy consists of running several instances of the algorithm of Rubinstein et al.
[2020], one for each partition. Therefore, by linearity of expectation, our policy collects in expectation a 1/2-fraction
of the expected maximum-reward within each partition and, hence, is 2-competitive against the optimal policy
for M ′. Finally, given that the partitioning is performed using the samples, the expected maximum-reward
independent set of M′ has the same expectation as if the partitioning was performed using the rewards, since the
samples and rewards are identically distributed. By applying Definition 5.1, we can conclude that our policy is
2α-competitive for M.

Remark 5.1. We remark that Theorem 5.1 can be extended in the case of other combinatorial problems (not
necessarily matroids) that satisfy a partitioning property, similar to Definition 5.1.

As an application of Theorem 5.1, we obtain improved SSPIs for a number of settings considered in Azar et al.
[2014], displayed in last four entries in Table 1. Indeed, the improvement in these results comes by noticing that
each of these matroid environments satisfy the α-partition property for constant α, and rely on a 4-competitive
single-choice OOS. As a result of Theorem 5.1 and Rubinstein et al. [2020], we can replace this OOS with a
2-competitive SSPI, thus improving the competitive guarantee by a factor of 2.

6 From Order-Oblivious Secretaries to Pointwise-SSPIs

Since direct SSPIs not only appear to offer better approximation than OOS policies, but also obviously have access
to more information (the samples) comparing to an OOS algorithm, one can hope to derive constant-factor SSPIs
even where according OOS policies fail to exist. For example, a major open problem in optimal stopping theory
is the existence of O(1)-competitive policies for the matroid secretary problem. While Babaioff, Immorlica, and
Kleinberg [Babaioff et al., 2007] conjectured the existence of such a policy, and O(1)-competitve policies are known
for many special cases (see, e.g., Soto et al. [2021]), the state-of-the-art for general matroids is a O(log log(rank))-
competitive policy due to Feldman et al. [2014], Lachish [2014]. In stark contrast, Kleinberg and Weinberg [2012]
give an optimal 2-competitive policy for the related matroid prophet inequality problem under full distributional
knowledge. Thus, given that the existence of an O(1)-competitive policy for the SSPI problem on general matroids
is a persistent open question, it is natural to ask whether the problem exhibits similarities in terms of hardness
with its (order-oblivious) secretary counterpart.

In this section, we make progress towards the above question, by relating the OOS problem with a wide class
of SSPI policies, which we refer to as “pointwise”-SSPIs (or “P-SSPIs”).

Definition 6.1. (P-SSPI) An SSPI policy is called P-SSPI, if it maintains its competitive guarantee when the
reward and sample of each element e are generated as follows: given two arbitrary non-negative weights ae,1 and
ae,2, we flip an independent fair coin to decide whether re = ae,1 and se = ae,2, or the opposite.

Notice that, as opposed to the SSPI problem, where each reward and sample are drawn independently from
the same distribution, P-SSPI allows for the reward and sample to be correlated. Further, by the exact same
reduction (and proof) presented in [Azar et al., 2014], which reduces SSPI to OOS, one can in fact show the
following stronger result:

Theorem 6.1. ([Azar et al., 2014]) Given any α-competitive OOS, one can construct an α-competitive P-
SSPI.

An important observation is that every known SSPI policy is also a P-SSPI policy with the same competitive
guarantee.

Observation 6.1. Every known SSPI policy, including the single-choice SSPI of Rubinstein et al. [2020], any
SSPI in [Azar et al., 2014], and our policies, falls into the class of P-SSPIs.

Perhaps surprisingly, we can establish the following result, which is a partial converse to the reduction in
Theorem 6.1:

Theorem 6.2. For any downward-closed feasible set of elements, given any α-competitive P-SSPI, one can
construct a 2α-competitive OOS.

Proof. Given an α-competitive policy P for the P-SSPI problem, we construct a policy A for the OOS problem
as follows: (Phase 1) Let k ∼ Binomial(n, 1/2) be a random number of elements. Observe (without collecting) the
rewards of the first k elements in uniformly random order, and feed them to P as the samples of the corresponding
elements. For the elements that are not yet observed, we feed to P zeros as the corresponding samples. (Phase 2)
For the remaining elements arriving in adversarial order, the OOS policy A mimics the decisions of P (i.e., the
OOS policy accepts if and only if P accepts), skipping the elements that are parsed in Phase 1.

We now show that the above policy is 2α-competitive for the OOS problem. Let OPT(OOS) be the optimal
reward for the OOS problem on some instance, and let OPT(P-SSPI) be the prophet’s reward on the corresponding
instance where the rewards of k elements chosen uniformly at random are set to zero. For our selection of k, it is
not difficult to verify that the reward of each element is zero (and its weight is provided to P as a sample) with
probability half. Hence, given that the optimal solution to OOS is feasible for P-SSPI and the reward of each
element “survives” with probability half, it follows that

E [OPT(P-SSPI)] ≥ 1

2
· OPT(OOS).

Let w(P) and w(A) be the reward collected by policy P and A, respectively, in the above reduction. Notice
that by construction of our reduction, every element that is parsed in Phase 1 of A, has zero reward and, thus, is
never collected by P in the online phase, without loss of generality. Given that these elements are skipped by A
in Phase 2 and, for the rest of the elements, A mimics the decisions of P, we can see that w(P) = w(A). Finally,
since P is an α-competitive P-SSPI, we can conclude that

E [w(A)] = E [w(P)] ≥ 1

α
· E [OPT(P-SSPI)] ≥ 1

2α
· OPT(OOS),

thus showing that A is a 2α-competitive OOS policy. We remark that the downward-closedness assumption on
the feasible set is only used for guaranteeing that rejecting elements in Phase 1 of A cannot lead to an infeasible
solution.

An immediate corollary of Observation 6.1 and Theorem 6.2 is that any known SSPI policy effectively provides
an algorithm for the corresponding (order-oblivious) secretary problem.

Note that by applying Theorem 6.2 to Theorem 4.1, we obtain a 48-competitive OOS policy for budget-
additive combinatorial auctions. To the best of our knowledge, this is the first order-oblivious secretary policy for
this problem.

By Theorem 6.2, solving the P-SSPI problem on a downward-closed feasible set (including general matroids)
immediately implies an OOS policy on the same feasible set. Hence, unless there exists a O(1)-competitive SSPI
which is not a P-SSPI, the SSPI problem is at least as as hard as the OOS problem (up to constant factors)!
Since all currently known SSPI are P-SSPI, it is natural to ask whether this observation can be generalized:

Given any α-competitive SSPI policy, does there also exist an O(α)-competitive P-SSPI policy? Or, stated
differently, are the classes of SSPI and P-SSPI equivalent up to constant factors?

In case of a positive answer to the previous problem, solving the constant-factor SSPI problem on general
matroids would imply also resolving the matroid secretary conjecture of Babaioff et al. [2007]. In any case, and
more generally: since P-SSPIs provide constant-factor approximations to the same class of problems as OOSs
do, only non-P-SSPI might be more powerful, i.e., only with such policies, the SSPI paradigm can ever cover a
greater scope of settings than OOS.

Acknowledgement

This work was supported by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design
Research in Online Markets”, the MIUR PRIN project ALGADIMAR “Algorithms, Games, and Digital Markets”,
and partially funded by NSF grant 2019844.

References

S. Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM J. Comput.,
43(2):930–972, 2014.

S. Alaei, M. Hajiaghayi, and V. Liaghat. Online prophet-inequality matching with applications to ad allocation.
In EC’12, pages 18–35, 2012.

P. Azar, S. Micali, C. Daskalakis, and S. M. Weinberg. Optimal and efficient parametric auctions. In SODA’13,
pages 596–604, 2013.

P. D. Azar, R. Kleinberg, and S. M. Weinberg. Prophet inequalities with limited information. In SODA’14, pages
1358–1377, 2014.

M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online mechanisms. In SODA’07,
pages 434–443, 2007.

M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and K. Talwar. Secretary problems: weights and discounts. In
SODA’09, pages 1245–1254, 2009.

S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. Multi-parameter mechanism design and sequential posted
pricing. In STOC’10, pages 311–320, 2010.

E. H. Clarke. Multipart pricing of public goods. Public choice, 11:17–33, 1971.

J. Correa, P. Dütting, F. Fischer, and K. Schewior. Prophet inequalities for iid random variables from an unknown
distribution. In EC’19, pages 3–17, 2019.

J. R. Correa, A. Cristi, B. Epstein, and J. A. Soto. The two-sided game of googol and sample-based prophet
inequalities. In SODA’20, pages 2066–2081, 2020a.

J. R. Correa, A. Cristi, B. Epstein, and J. A. Soto. Sample-driven optimal stopping: From the secretary problem
to the i.i.d. prophet inequality. CoRR, abs/2011.06516, 2020b.

J. R. Correa, P. Dütting, F. A. Fischer, K. Schewior, and B. Ziliotto. Unknown I.I.D. prophets: Better bounds,
streaming algorithms, and a new impossibility. In ITCS’21, pages 86:1–86:1, 2021.

P. Dhangwatnotai, T. Roughgarden, and Q. Yan. Revenue maximization with a single sample. In D. C. Parkes,
C. Dellarocas, and M. Tennenholtz, editors, EC’10, pages 129–138, 2010.

N. B. Dimitrov and C. G. Plaxton. Competitive weighted matching in transversal matroids. Algorithmica, 62
(1-2):333–348, 2012.

P. Dütting and R. Kleinberg. Polymatroid prophet inequalities. In ESA’15, pages 437–449, 2015.

P. Dütting, M. Feldman, T. Kesselheim, and B. Lucier. Prophet inequalities made easy: Stochastic optimization
by pricing nonstochastic inputs. SIAM J. Comput., 49(3):540–582, 2020a.

P. Dütting, T. Kesselheim, and B. Lucier. An O(log log m) prophet inequality for subadditive combinatorial
auctions. In FOCS’20, pages 306–317, 2020b.

P. Dütting, F. Fusco, P. Lazos, S. Leonardi, and R. Reiffenhäuser. Efficient two-sided markets with limited
information. In STOC’21, pages 1452–1465, 2021.

S. Ehsani, M. Hajiaghayi, T. Kesselheim, and S. Singla. Prophet secretary for combinatorial auctions and matroids.
In SODA’18, pages 700–714, 2018.

T. Ezra, M. Feldman, N. Gravin, and Z. G. Tang. Online stochastic max-weight matching: Prophet inequality
for vertex and edge arrival models. In EC’20, pages 769–787, 2020.

M. Feldman, O. Svensson, and R. Zenklusen. A simple O (log log (rank))-competitive algorithm for the matroid
secretary problem. In SODA’14, pages 1189–1201, 2014.

M. Feldman, N. Gravin, and B. Lucier. Combinatorial auctions via posted prices. In SODA’15, pages 123–135,
2015.

M. Feldman, O. Svensson, and R. Zenklusen. Online contention resolution schemes. In SODA’16, pages 1014–1033,
2016.

N. Gravin and H. Wang. Prophet inequality for bipartite matching: Merits of being simple and non adaptive. In
EC’19, pages 93–109, 2019.

T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

M. T. Hajiaghayi, R. Kleinberg, and T. Sandholm. Automated online mechanism design and prophet inequalities.
In AAAI’07, pages 58–65, 2007.

H. Kaplan, D. Naori, and D. Raz. Competitive analysis with a sample and the secretary problem. In SODA’20,
pages 2082–2095, 2020.

H. Kaplan, D. Naori, and D. Raz. Online weighted bipartite matching with a sample. CoRR, abs/2104.05771,
2021.

R. Kleinberg and S. M. Weinberg. Matroid prophet inequalities. In STOC’12, pages 123–136, 2012.

N. Korula and M. Pál. Algorithms for secretary problems on graphs and hypergraphs. In ICALP’09, pages
508–520, 2009.

U. Krengel and L. Sucheston. Semiamarts and finite values. Bull. Am. Math. Soc., 83:745–747, 1977.

U. Krengel and L. Sucheston. On semiamarts, amarts, and processes with finite value. Adv. in Probab. and
Related Topics, 4:197––266, 1978.

O. Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In FOCS’14, pages 326–335,
2014.

T. Ma, B. Tang, and Y. Wang. The simulated greedy algorithm for several submodular matroid secretary problems.
Theory Comput. Syst., 58(4):681–706, 2016.

R. B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58–73, 1981.

A. Rubinstein. Beyond matroids: secretary problem and prophet inequality with general constraints. In STOC’16,
pages 324–332, 2016.

A. Rubinstein and S. Singla. Combinatorial prophet inequalities. In SODA’17, pages 1671–1687, 2017.

A. Rubinstein, J. Z. Wang, and S. M. Weinberg. Optimal single-choice prophet inequalities from samples. In
ITCS’20, pages 60:1–60:10, 2020.

E. Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative random variables.
Ann. Probab., 12:1213–1216, 1984.

J. A. Soto. Matroid secretary problem in the random-assignment model. SIAM J. Comput., 42(1):178–211, 2013.

J. A. Soto, A. Turkieltaub, and V. Verdugo. Strong algorithms for the ordinal matroid secretary problem. Math.
Oper. Res., 46:642–673, 2021.

W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. J. Finance, 16(1):8–37, 1961.

A Appendix

Claim 3.1. The sets E+, MS and M are distributed the same way when computed by Algorithm 3 as when
computed by Algorithm 4.

Proof. The proof is analogous to the one of Claim 2.1. The sets R and S in the offline and online setting follow
the same distribution as argued in the previous Section, and MS is still the greedy matching with respect to the
samples S, in both Algorithm 3 and Algorithm 4. We know that M is extracted in the same way by E+ by the
two algorithms, so we just need to argue that for each fixed realization of the edge weights, the online and offline
versions of the edge sets E+ coincide.

In Algorithm 3, E+ contains at most one edge e = {b, i} for each buyer b ∈ B. This is the edge of largest
reward that is above both prices pb and pi, if such an edge exists. Now, in Algorithm 4, observe that, once an edge
e = {b, i} is added to E+, the buyer b is removed from the set BR. Therefore, in this algorithm also, at most one
edge can be added to E+ for each buyer. Now, observe that if the edge is added to E+, then it must be over the
price of b and i. Indeed, this follows because, in order for e to be added to E+, it must be the case that b ∈ BR

(and, by construction, also in BS) and i ∈ IS , which implies that b and i have not yet been matched in the greedy
sample solution, and thus, because of the greedy traversal order, its reward must be above both prices. Finally,
we observe that, again due to the greedy traversal order, if e is added to E+, then it must be the largest-reward
edge which is above the prices pb and pi. Hence E+ follows the same distribution in both algorithms.

Theorem 3.2. For the problem of finding a maximum-weight matching in a bipartite graph G in the online vertex
arrival model, Algorithm 5 is truthful and 16-competitive in expectation, i.e.,

16 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of an optimal matching in G.

Proof. Truthfulness is immediate: on arrival, the unmatched items are offered to the buyer for prices determined
independently of the buyer’s values, and she is assigned one that is maximizing her utility. By misreporting, her
utility can therefore only become worse.

The competitive analysis of the Algorithm 5 follows closely that of our algorithm for the matching problem on
general graphs with edge-arrivals, Algorithm 1. Let E′ be the set of price-feasible edges, namely, E′ contains any
edge e = {b, i} such that re ≥ max{pb, pi}. Notice that, given both in Algorithm 1 and in Algorithm 5 the prices
are computed in the exact same way (via the greedy matching solution using the S), E′ has the exactly the same
meaning in both algorithms. Further, note that

⋃

i∈I F (i) ⊆ E′, and that the arrival order, be it edge-arrival or
vertex-arrival, has no influence whatsoever on the computation of set E′.

Therefore, we can establish, in exactly the same way as in the proof of Theorem 2.1, that

E

[

∑

b∈B

valE′(b)

]

≥ 1

2
· E

[

∑

b∈B

valMS
(b)

]

=
1

2
· E [w(MS)] ≥ 1

4
· E [OPT] ,

where by valÊ(b) we denote the maximum-weight over all edges of a weighted set Ê ⊆ E adjacent to buyer b.
Let eb be the maximum-reward edge in E′ adjacent to buyer b, if such an edge exists. By applying

Definition 2.1 for the edge-arrival case, we say that an edge e = {b, i} is safe for buyer b, if e is the only
edge in E′ adjacent to b, and there is no edge in E′ that is adjacent to item i and has smaller weight than re.
By the exact same arguments as in Lemma 2.1, for any buyer b and incident edge e such that the probability of
eb = e is non-zero, we have that P[eb is safe for b | eb = e] ≥ 1

4 . Thus, for any realization of the edge weights in
A, by the analysis of Lemma 2.2, we have that

E

[

∑

b∈B

reb
1{eb is safe for b}

]

≥ 1

4
· E

[

∑

b∈B

reb

]

=
1

4
· E

[

∑

b∈B

valE′(b)

]

≥ 1

16
· E [OPT] .

Again, since our proof for the edge-arrival case holds for any (adversarial) arrival order, it can be easily verified
that Algorithm 5 is going to collect a reward of at least the weight of the safe edges in E′ in expectation. Indeed,

by following exactly the arguments of Lemma 2.3, we can show that

E [w(M)] ≥ E

[

∑

b∈B

reb
1{eb is safe for b}

]

.

The competitive guarantee follows simply by combining the above inequalities.

Theorem 3.3. For the problem of finding a maximum-weight independent set in a transversal matroid M,
Algorithm 6 is 8-competitive in expectation, i.e.,

8 · E [w(M)] ≥ E [OPT] ,

where OPT is the weight of a maximum-weight independent set in the transversal matroid M.

Proof. The proof follows through minor, though careful, modifications to the arguments used for Theorem 3.1.
We will briefly sketch the main ideas needed.

One can construct the equivalent offline algorithm in a similar manner as described in Algorithm 4. In
particular, we first order the set of items I in the same manner as in Algorithm 6. Then, we construct a set A
of 2|B| buyer weights (as opposed to 2|E| edge weights in Algorithm 4) by adding two values, ab,1, ab,2 drawn
independently from Db for each buyer b to A. Then, we iterate over the set A in decreasing order, and for each
value a corresponding to a buyer b, we iterate over each edge of the buyer in the predetermined ordering on I,
adding at most one edge, using the same decision rule as in Algorithm 4. The equivalence between this offline
algorithm and Algorithm 6 follows by the same arguments presented in Claim 3.1.

Employing the same definition of safe edges as in Definition 3.1, one can prove, in the exact same manner as
in Lemma 3.1, that for any edge e adjacent to buyer b, and denoting eb as the edge in E+ with largest weight,

Pr [eb is safe for b | eb = e] ≥ 1

2
,

since the proof of that result relied only on the independence of edge weights for different buyers. Just as in
Lemma 3.2, the above result immediately implies that

E

[

∑

b∈B

reb
1{eb is safe for buyer b}

]

≥ 1

2
· E

[

∑

b∈B

reb

]

.

Next, to relate the weight of the set collected by the algorithm with the reward of the safe edges, we note that,
as in Lemma 3.3,

E [w(M)] ≥ E

[

∑

b∈B

reb
1{eb is safe for buyer b}

]

,

since the proof of this result holds for any run of the algorithm (not just in expectation), and relies only on the
fact that, if an edge eb = {b, i} is safe for buyer b, then, by construction, either eb is added to M , or another edge
e′ = {b′, i} that is not safe for buyer b′ with reward re′ ≥ reb

is collected instead.
Finally, since this greedy algorithm is still a 2-approximation to OPT, just as in the proof of Theorem 3.1, it

suffices to show that

E

[

∑

b∈B

reb

]

≥ 1

2
· E [w(MS)] ≥ 1

4
· E [OPT] .

The argument here follows closely that presented in the proof of Theorem 2.1. Indeed, consider the first time, in
a run of the algorithm, when an edge e = {b, i} is being processed and i has not yet been matched in MS . Then,
if the coin flip for buyer b lands heads (with probability 1

2), then the algorithm will add e to M , and it must be
that the item for buyer b in MS (if any such exists) has smaller weight than reb

. Otherwise, if the coin flip lands
tails, then eb is added to MS (and no edge for buyer b will be added to E+). Thus, denoting eb as the edge in
E+ with largest weight, it follows that E [reb

] ≥ 1/2 · E [valMS
(b)] (where valMS

(b) denotes the weight of the edge
adjacent to buyer b in MS). Applying linearity of expectation, the claimed bound, and thus the theorem, follows.

Claim 4.1. The sets E′, GS , and M are distributed the same way when computed by Algorithm 7 as when
computed by Algorithm 8.

Proof. The proof is in the same spirit as Claims 2.1 and 3.1. Indeed, by symmetry, the sets of sample and
reward values, S and R, respectively, follow the same distribution in the online and offline setting. Further, the
construction of the greedy solution GS in Algorithm 8 depends only on the samples S, and thus follows the same
distribution as in Algorithm 7. Since M is constructed in the exact same way by both algorithms using the edges
E′, it suffices to argue, for each fixed realization of edge weights, that E′ follows the same distribution in both
algorithms.

Now, observe that the checks performed by Algorithm 8 to add an R-used edge e = {b, i} to E′ exactly
correspond to those in Algorithm 7. Indeed, neither algorithm collects an edge with weight smaller than its
sample (guaranteed by the threshold τi in Algorithm 7, and by the check that i ∈ IS in Algorithm 8). Since
Algorithm 8 processes the edges in decreasing order of weight, item i is removed from IS at the time when
an edge with weight a is assigned to i, which implies that the threshold τi for item i will be set to a. Again
because of the greedy processing order, the sample capacity CS(b) when an element e = {b, i} with weight a is
considered in Algorithm 7 exactly corresponds to CS(b, a) in Algorithm 8. Hence, it follows that E′ follows the
same distribution in both algorithms.

	1 Introduction
	1.1 A New Framework for Single-Sample Prophet Inequalities
	1.1.1 Single-Sample Prophet Inequalities via Greedy-Ordered Selection
	1.1.2 New and Improved Single-Sample Prophet Inequalities

	1.2 Limitations of Single-Sample Prophet Inequalities
	1.3 Further Related Work
	1.4 Organization of the Paper

	2 Edge Arrival in General Graphs
	3 Vertex Arrival in Bipartite Graphs
	3.1 Main algorithm and analysis
	3.2 Truthful Bipartite Matching
	3.3 Transversal Matroids

	4 Budget-Additive Combinatorial Auctions
	5 From a-Partition to Single-Sample Prophet Inequalities
	6 From Order-Oblivious Secretaries to Pointwise-SSPIs
	A Appendix

