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We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers

reside initially at a particular point of the metric space and serve a sequence of requests. In the framework

of competitive analysis, we show a surprisingly tight connection between this problem and the resource

augmentation version of the k-server problem, also known as the (h,k )-server problem, in which an online

algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the

infinite server problem has bounded competitive ratio if and only if the (h,k )-server problem has bounded

competitive ratio for some k = O (h). We give a lower bound of 3.146 for the competitive ratio of the infinite

server problem, which holds even for the line and some simple weighted stars. It implies the same lower

bound for the (h,k )-server problem on the line, even when k/h → ∞, improving on the previous known

bounds of 2 for the line and 2.4 for general metrics. For weighted trees and layered graphs, we obtain upper

bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line,

which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded

interval. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces.

Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing

algorithms) fail even for this special case.
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1 INTRODUCTION

In the k-server problem, one of the most central and well-studied online problems [21, 25], k
servers serve a sequence of requests. The servers reside at points of a metric space M and requests
are simply points of M . Serving a request entails moving one of the servers to the request. The
objective is to minimize the total distance traveled by the servers. The most interesting variant of
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the problem is its online version, in which the requests appear one by one and the online algorithm
must decide how to serve a request without knowing the future requests. It is known that the
deterministic k-server problem has competitive ratio between k and 2k − 1 for every metric space
with at least k + 1 points [23, 25].

We study the infinite server problem (hereafter written ∞-server problem),1 the variant of the
k-server problem where k = ∞. Of course, this problem would be trivial if each point of the metric
space was already occupied by a server in the initial configuration. To avoid this, we assume that
all infinitely many servers initially reside at the same point, the source. At first glance it may appear
that the lower bound of k for the k-server problem would imply an unbounded competitive ratio
for the ∞-server problem. But consider, for example, a uniform metric space (i.e., the distance
between any two points is 1), and observe that the ∞-server problem has competitive ratio 1 for
this case.

The∞-server problem is closely related to the (h,k )-server problem, the resource augmentation
version of the k-server problem in which the online algorithm has k servers and competes against
an offline algorithm with h ≤ k servers. This refinement of the k-server problem is also known
as the weak adversaries model [3, 20]. One major open problem in competitive analysis is whether
the (h,k )-server problem has bounded competitive ratio when k � h. Here, we show a, perhaps
surprising, tight connection between the ∞-server problem and the (h,k )-server problem, which
also allows us to improve lower bounds for the latter.

The∞-server problem is also a considerable generalization of the ski-rental problem, since the
ski-rental problem is essentially a special case of the ∞-server problem when the metric space is
an isosceles triangle (with the source at the more remote vertex of the triangle). Conversely, we
show that the general∞-server problem for arbitrary metric spaces can be reduced to a “ski-rental
version” in which all requests are in a bounded-diameter metric space and the source is in fixed
distance from every other point.

Besides its theoretical appeal, our main reasons for investigating the∞-server problem are the
following: The competitive ratio of thek-server problem goes to infinity ask → ∞, but fork = ∞ it
goes back to a small constant at least on some metric spaces (even on some infinite ones). Thus, the
high competitive ratio of the k-server problem can be misleading for situations where the number
of servers is so high that it is not a limitation in practice. A study of the ∞-server problem can
provide a better understanding of these cases. Moreover, the ∞-server problem allows to model
applications where more servers can be bought. A price for buying new servers can be modeled
easily by appropriate placement of the source in the metric space. Finally, the relationship between
the∞-server problem and the (h,k )-server problem allows for new ways to tackle the latter.

1.1 Previous Work

The k-server problem was first formulated by Manasse et al. [25] to generalize a variety of online
settings whose stepwise cost had a “metric”-like structure. They built on previous work by Sleator
and Tarjan [26], the genesis of competitive analysis, on the paging problem. This problem can
be easily recast as a k-server instance for the uniform metric and was already known to be k-
competitive.

Manasse et al. [25] also showed that the deterministic competitive ratio of the k-server problem
is at least k on any metric space with more than k points. They then proposed the renowned k-
server conjecture, stating that this bound is tight. This has been shown to be true for k = 2 [25]
and for several special metric spaces [11, 12, 22, 25, 26]. A stream of refinements [5, 18] led to

1We first learned about this problem from Kamal Jain.
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better competitive ratios for general metric spaces until Reference [23] showed that a competitive
ratio of 2k − 1 can be achieved on any metric space. For randomized algorithms, the folklore
randomized k-server conjecture states that the competitive ratio is θ (logk ) on general metric spaces.
There has been tremendous progress on this question very recently, leading to polylogarithmically
competitive algorithms for general metric spaces [1, 9, 24]. Chasing the competitive ratio for the
k-server problem has been pivotal for the development of competitive analysis and is by many
considered the “holy grail” of the field.

In the weak adversaries setting, significantly less is known. For the (h,k )-server problem, the

exact deterministic competitive ratio is k
k−h+1 on uniform metrics (equivalent to paging) [26] and

weighted stars (equivalent to weighted paging) [27]. More recently, Bansal et al. [4] showed that as
k/h → ∞, the competitive ratio on weighted trees is bounded by a constant depending exponen-
tially on the depth of the tree. Using randomization, exponentially better competitive ratios can be
achieved on uniform metrics [28] and weighted stars [2]. For trees of depthD and k ≥ (1+ϵ ) ·h, the
techniques of Reference [9] yield an O (D · log(1/ϵ ))-competitive fractional algorithm,2 as shown
in Reference [10].

On general metrics, the (h,k )-server problem is only poorly understood. No algorithm is known
for general metrics that performs better than disabling the k −h extra servers and using h servers
only. In fact, for the line it was shown [3, 4] that the Double Coverage Algorithm and the Work
Function Algorithm—despite achieving the optimal competitive ratio ofh if k = h [6, 11] – perform
slightly worse in the resource augmentation setting than disabling the k − h extra servers and
applying the same algorithm to h servers only. For the case that h is not fixed, the Work Function
Algorithm was shown to be 2h-competitive simultaneously against any number h ≤ k of offline
servers [20].

In terms of lower bounds, it is known that unlike for (weighted) paging, the competitive ratio
does not converge to 1 on general metrics even as k/h → ∞. Prior to this work, the best known
lower bounds were 2 on the line, due to Bar-Noy and Schieber (see Reference [8, p. 175]), and 2.4
for general metrics, as shown recently by Bansal et al. [4].

The closest publication to this work is by Csirik et al. [16], which studies a problem that is
essentially the special case of the∞-server problem on the uniform metric space augmented by a
faraway source. It is cast as a paging problem where new cache slots can be bought at a fixed price
per unit and gives matching upper and lower bounds of ≈3.146 on the competitive ratio.

1.2 Our Results

Our main result is an equivalence theorem between the ∞-server problem and the (h,k )-server
problem, presented in Section 2. It states that the∞-server problem is competitive on every metric
space if and only if the (h,k )-server problem is O (1)-competitive on every metric space as k/h →
∞. We show further that it is not even necessary to let k/h tend to infinity, because in the positive
case, there must also exist some k = O (h). The theorem holds also if “every metric space” is
replaced by “the real line.”

In Section 3, we present upper and lower bounds on the competitive ratio of the∞-server prob-
lem on a variety of metric spaces. Extending the work in Reference [16], we present a tight lower
bound of approximately 3.146 for a class of metric spaces that includes every non-discrete space
as well as some simple weighted stars. This lower bound is then turned into a lower bound of the
same value for the (h,k )-server problem, improving on the previous lower bounds for this setting.
We show how recent work by Bansal et al. [4] can be adapted to give an upper bound on the

2When the tree is an HST, this can be rounded to a randomized integral algorithm.
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competitive ratio of the ∞-server problem on bounded-depth weighted trees. We also consider
layered graph metrics, which are equivalent (up to a factor of 2) to general graph metrics. We have
not settled the case for their competitive ratio, but we present a natural algorithm with tight anal-
ysis and a lower bound of 3 for general algorithms, which also beats the previous lower bounds
on the (h,k )-server problem.

In Section 4, we show how a variety of known algorithms such as the work function and bal-
ancing algorithms fail for the∞-server problem, even on the real line. We focus in particular on a
class of speed-adjusted variants of the well-known double coverage algorithm.

Finally, we present a useful reduction from arbitrary metric spaces to bounded subspaces in Sec-
tion 5. In particular, the∞-server problem on the line is competitive if and only if it is competitive
for the special case where requests are restricted to some bounded interval further away from the
source.

1.3 Recent Developments

Following the original announcement of our work [14], Bienkowski et al. [7] showed very recently
that the competitive ratio of the (h,k )-server problem on general metrics is Ω(log logh), even if
k/h → ∞. Thus, as implied by our equivalence theorem, there exists no competitive algorithm for
the∞-server problem on general metrics. In fact, it is stated in Reference [7] that they first found
this lower bound by studying the∞-server problem.

1.4 Preliminaries

Let M = (M,d ) be a metric space and let s be a point of M . In the∞-server problem on (M, s ), an un-
bounded number of servers starts at point s and serves a finite sequenceσ = (σ0 = s,σ1,σ2, . . . ,σm )
of requestsσi ∈ M . Serving a request entails moving one of the servers to it. The goal is to minimize
the total distance traveled by the servers.

We drop s in the notation if the location of the source is not relevant or understood. We refer
to the action of moving a server from the source to another point as spawning. Throughout this
work, we use the letter d for the metric associated with the metric space.

In the online setting, the requests are revealed one-by-one and need to be served immediately
without knowledge of future requests. All algorithms considered in this article are deterministic.
An algorithm is called lazy if it moves only one server to serve a request at an unoccupied point
and moves no server if the requested point is already covered. An algorithm is called local [15] if it
moves a server from a to b only if there is no server at some other point c on a shortest path from
a to b, i.e., with d (a,b) = d (a, c ) + d (c,b). It is easy to see that any algorithm can be turned into a
lazy and local algorithm without increasing its cost (i.e., the total distance traveled by all servers).

For an algorithm ALG, we denote by ALG(σ ) its cost on the request sequence σ . Similarly, we
write OPT(σ ) for the optimal (offline) cost.

An online algorithm ALG is ρ-competitive for ρ ≥ 1 if ALG(σ ) ≤ ρOPT(σ ) + c for all σ , where
c is a constant independent of σ . The competitive ratio of an algorithm is the infimum of all such
ρ. We say that an algorithm is competitive if it is ρ-competitive for some ρ. We also call an online
problem itself (ρ-)competitive if it admits such an algorithm. If the additive term c in the definition
is 0, then the algorithm is also called strictly ρ-competitive [17].

The (h,k )-server problem on M is defined like the ∞-server problem except that the number of
servers is k for the online algorithm and h for the optimal (offline) algorithm against whom it is
compared in the definition of competitiveness. For this problem, the servers are not required to
start at the same point, although a different initial configuration would only affect the additive term
c . The problem is interesting only when k ≥ h, as otherwise the competitive ratio is infinite. The
case h = k is the standard k-server problem and the case k ≥ h is known as the weak adversaries

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 20. Publication date: July 2021.
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model. One major open problem is to determine the competitive ratio of the (h,k )-server problem,
as k tends to infinity.

We will sometimes write OPTh and OPT∞ for the optimal offline algorithm, where the index
specifies the number of servers available to it.

The following is a technical lemma that allows us to handle algorithmic “convergence” by con-
sistently extending a sequence of parameterized algorithms (e.g., by the number of servers they
use) to their limit:

Lemma 1.1. Fix a metric spaceM . For eachn, let ALGn be an algorithm with cost ALGn (σ ) ≤ fn (σ )
for every request sequence σ on M , where fn are functions such that

lim
n→∞

fn (σ ) = f (σ ).

Then there exists an algorithm ALG with ALG(σ ) ≤ f (σ ).

Proof. Assume, without loss of generality, that all algorithms ALGn are lazy.
For every request sequenceσ , consider the equivalence relation≡σ on natural numbers in which

n ≡σ n′ if and only if ALGn (σ ) and ALGn′ (σ ) serve σ in exactly the same way (i.e., make exactly
the same moves). To every σ , we associate an equivalence class H (σ ) of ≡σ such that

• H (σ ) is infinite,
• H (σr ) ⊆ H (σ ), for every request r .

This is done inductively on the length of σ (in a manner reminiscent of König’s lemma) as follows:
For the base case when σ is the empty request sequence,H (σ ) = N. For the induction step, suppose
that we have defined H (σ ). Consider the equivalence classes of ≡σ r , a refinement of the equiva-
lence classes of ≡σ . Since there are only finitely many possible ways to serve r , they partitionH (σ )
into finitely many parts. At least one of these parts is infinite and we select it to be H (σr ); if there
is more than one such set, then we select one arbitrarily, say, the lexicographically first.

Given such a mappingH , we define the online algorithm ALG, which serves every σ in the same
way as all the online algorithms ALGn for n ∈ H (σ ). The second property of H guarantees that
ALG is a well-defined online algorithm.

By construction, ALG(σ ) = ALGn (σ ) ≤ fn (σ ) for all n ∈ H (σ ). Taking the limit as n → ∞ along
the subsequence H (σ ) ⊆ N yields ALG(σ ) ≤ f (σ ). �

The following two propositions will be useful later in the article:

Proposition 1.2. If for every metric space there exists a competitive algorithm for the ∞-server

problem, then there exists a universal competitive ratio ρ such that the ∞-server problem is strictly
ρ-competitive on every metric space.

Proof. We first show the existence of ρ such that the∞-server problem is ρ-competitive (strictly
or not) on every metric space. Suppose such ρ does not exist, then for every n ∈ N, we can find
a metric space Mn containing some point sn such that the ∞-server problem on (Mn , sn ) is not n-
competitive. Consider the metric space obtained by taking the disjoint union of all spaces Mn and
gluing all the points sn together. The ∞-server problem would not be competitive on this metric
space, in contradiction to the assumption.

Analogously, we can also find a universal constant c such that a ρ-competitive algorithm ALG

with additive constant c in the definition of competitive ratio exists for general metrics. Let ALGn

be the algorithm that acts like ALG if all distances were scaled by a factor n. Then for each request
sequence σ it holds that ALGn (σ ) ≤ ρOPT(σ ) + c/n. Now, Lemma 1.1 implies the existence of a
strictly ρ-competitive algorithm. �

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 20. Publication date: July 2021.
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With a very similar argument, we get:

Proposition 1.3. Let k = k (h) be a function of h. Suppose that for every metric space M and for

all h there exists an O (1)-competitive algorithm for the (h,k )-server problem on M . Then there exists

a universal competitive ratio ρ such that the (h,k )-server problem is strictly ρ-competitive on every

metric space if all servers start at the same point.

2 EQUIVALENCE OF∞-SERVER AND WEAK ADVERSARIES

The main result of this section is the following tight connection between the ∞-server problem
and the weak adversaries model. Although we provide a proof for deterministic algorithms only,
we remark that the proof can be extended to randomized algorithms as well.

Theorem 2.1. The following are equivalent:

(a) The∞-server problem is competitive.

(b) The (h,k )-server problem is O (1)-competitive as k/h → ∞.

(c) For each h there exists k = O (h) so the (h,k )-server problem is O (1)-competitive.

The three statements above are also equivalent if we fix the metric space to be the real line.

The implication “(c) =⇒ (b)” is trivial. The proof of the equivalence theorem consists in its core
of two reductions. Theorem 2.2 contains the easier of the two reductions, which is from the ∞-
server problem to the k-server problem against weak adversaries (“(b) =⇒ (a)”). This reduction
follows directly from Lemma 1.1 proved in the last section. By Propositions 1.2 and 1.3, it suffices
to consider only strictly competitive algorithms. Theorem 2.3 proves the converse reduction for
general metric spaces (“(a) =⇒ (c)”), and Theorem 2.6 specializes it to the line.

Theorem 2.2. Fix a metric spaceM and consider algorithms with all servers starting at some s ∈ M .

If for every h there exists k such that the (h,k )-server problem on M is strictly ρ-competitive, for some

constant ρ, then there exists a strictly ρ-competitive online algorithm for the∞-server problem on M .

Proof. For any request sequence σ , the optimal offline cost OPT∞ (σ ) is equal to OPTh (σ ) when-
ever h is at least the length of σ . Thus, the proof is immediate from Lemma 1.1 by choosing ALGh

to be a strictly ρ-competitive algorithm for the (h,k )-server problem and fh (σ ) = ρ ·OPTh (σ ). �

We now show the reduction from thek-server problem against weak adversaries to the∞-server
problem on general metric spaces.

Theorem 2.3. If the∞-server problem on general metric spaces is strictly ρ̃-competitive, then there

exists a constant ρ such that the (h,k )-server problem is ρ-competitive, for k = O (h). In particular,

for every ϵ > 0, we can take ρ = (3 + ϵ )ρ̃ and any k ≥ (1 + 1/ϵ )ρ̃h.

Proof. Fix some metric space M and a point s ∈ M . We will describe a strictly ρ-competitive
algorithm for the (h,k )-server problem on M for the case that all servers start at s . This implies a
(not necessarily strictly) ρ-competitive algorithm for any initial configuration.

The idea is to simulate a strictly ρ̃-competitive ∞-server algorithm, but whenever it would
spawn a (k + 1)st server, we bring all servers back to the origin and restart the algorithm. The
problem is that the overhead cost for returning the servers to the origin may be very high. To
compensate for this, we assume that every time the servers return to the origin, they pretend to
start from a different point further away from the origin. This motivates the following notation:

Definition 2.4. Given a metric M , a point s ∈ M , and a value w ≥ 0, we will use the notation
Ms⊕w to denote the metric derived from M by increasing the distance from s to every other point
(additively) by w ; we will also denote the relocated point by s ⊕w .

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 20. Publication date: July 2021.
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Let ALG∞ denote a strictly ρ̃-competitive online algorithm for the ∞-server problem. We now
define an online algorithm ALGk for k servers (all starting at s). We will make use of the notation
A(σ ; s ) to denote the cost of algorithm A to serve the request sequence σ when all servers start
at s .

Definition 2.5 (ALGk derived from ALG∞). Algorithm ALGk runs in phases with the initial phase
being the 0th phase. At the beginning of every phase, all servers of ALGk are at s . In every phase i ,
the algorithm simulates the ∞-server algorithm ALG∞, whose servers start at s ⊕ wi for some
wi ≥ 0. The parameters wi are determined online, and initially w0 = 0. Whenever ALG∞ spawns
a server from s ⊕wi , algorithm ALGk spawns a server from s .

The phase ends just before ALG∞ spawns its (k +1)st server or when the request sequence ends.
In the former case, all servers of ALGk return to s to start the (i + 1)st phase. To determine the
starting point of the simulated algorithm of the next phase, we set

wi+1 = ϵ
OPTh (σi ; s )

h
, (1)

where σi is the sequence of requests during phase i .

Let n be the number of phases. The cost of ALGk for the requests in phase i < n is ALG∞ (σi ; s ⊕
wi ) − kwi ; the last term is subtracted because the k servers do not have to actually travel the
distance between s ⊕wi and s . However, for the last phase, no such term can be subtracted, since
we do not know how many servers are spawned during the phase, and we can only bound the cost
from above by ALG∞ (σn ; s ⊕ wn ). The cost of returning the servers to s at the end of a phase can
at most double the cost during the phase.

From this, we see that the total cost of ALGk in phase i is

costi ≤
⎧⎪⎨⎪⎩2 (ALG∞ (σi ; s ⊕wi ) − kwi ) for i < n

ALG∞ (σn ; s ⊕wn ) for i = n.

Since ALG∞ is strictly ρ̃-competitive, we have

ALG∞ (σi ; s ⊕wi ) ≤ ρ̃ OPT∞ (σi ; s ⊕wi )

≤ ρ̃ OPTh (σi ; s ⊕wi )

≤ ρ̃ (OPTh (σi ; s ) + hwi ),

and substituting this in the expression for the cost, we can bound the total cost by

ALGk (σ ; s ) =
n∑

i=0

costi ≤ 2

n−1∑
i=0

(ρ̃ (OPTh (σi ; s ) + hwi ) − kwi ) + ρ̃ (OPTh (σn ; s ) + hwn )

= 2

n−1∑
i=0

(ρ̃OPTh (σi ; s ) − (k − ρ̃h)wi ) + ρ̃OPTh (σn ; s ) + ρ̃hwn .

The parameters wi were selected so for k ≥ (1 + 1/ϵ )ρ̃h the summation telescopes, and we are
left with

ALGk (σ ; s ) ≤ 2 ρ̃ OPTh (σn−1; s ) + ρ̃ OPTh (σn ; s ) + ρ̃ ϵ OPTh (σn−1; s )

≤ (3 + ϵ ) ρ̃ OPTh (σ ; s ). �

The previous reduction requires the∞-server problem to be competitive on every metric space.
The following variant only requires the∞-server problem to be competitive on the line:

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 20. Publication date: July 2021.
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Theorem 2.6. If the∞-server problem on the line is ρ-competitive, then for every h ∈ N and ϵ > 0,

the (h,k )-server problem on the line is (3 + ϵ )ρ-competitive, when k ≥ 2�(1 + 1/ϵ )ρh�.

Proof. Given the premise, we will show that there is a (3 + ϵ )ρ-competitive algorithm for the
(h,k )-server problem on the half-lineM := [0,∞) when k ≥ (1+1/ϵ )ρh. The theorem then follows
by doubling the number of servers and using half of them in each half-line.

By a straightforward scaling argument, if the ∞-server problem on the line is ρ-competitive,
then it is also strictly ρ-competitive. This in turn implies a strictly ρ-competitive online algorithm
for the space M0⊕w , since this space is isometric to the subspace {−w } ∪ (0,∞) of the line. A
straightforward adaptation of the proof of the previous theorem now shows the existence of a
(3 + ϵ )ρ-competitive algorithm for the (h,k )-server problem on M when k ≥ (1 + 1/ϵ )ρh. �

In the next section, we give upper and lower bounds on the competitive ratio of the ∞-server
problem on some particular metric spaces.

3 UPPER AND LOWER BOUNDS

Unlike the k-server problem, which is 1-competitive if and only if the metric space has at most
k points and conjectured k-competitive otherwise, the situation is more diverse for the ∞-server
problem. As mentioned earlier, the recent result of Reference [7] shows that there exists a metric
space where no competitive algorithm exists. On the other extreme, on uniform metric spaces
(where all distances are the same) the problem is trivially 1-competitive even if the metric space
consists of uncountably many points: An optimal strategy in this case is to spawn a server to
every requested point. More generally, this strategy achieves a finite competitive ratio on any
metric space where distances are bounded from below and above by positive constants. This shows
that statements about the competitive ratio for the ∞-server problem cannot be as simple as the
(conjectured) dichotomy for the k-server problem, which depends only on the number of points of
the metric space. In this section, we derive bounds on the competitive ratio for particular classes
of metric spaces.

3.1 Weighted Trees

We consider the ∞-server problem on metric spaces that can be modeled by edge-weighted trees.
The points of the metric space are the nodes of the tree, and the distance between two nodes is
the sum of edge weights along their connecting path. We choose the source of the metric space
as the root of the tree, and define the depth of the tree as the maximal number of edges from the
root to a leaf. The number of nodes can be infinite (otherwise the ∞-server problem is trivially
1-competitive), but we assume the depth to be finite.

An upper bound on the competitive ratio of such trees follows easily from an upper bound for
the (h,k )-server on such trees [4] and the equivalence theorem:

Theorem 3.1. The competitive ratio of the∞-server problem on trees of depthD is at mostO (2D ·D).

Proof. Bansal et al. [4] showed that the competitive ratio of the (h,k )-server problem on trees
of depthD is at mostO (2D ·D) provided that k/h is large enough. If all servers start at the root, then
it is in fact strictlyO (2D ·D)-competitive (because the initial potential function value in Reference
[4] is 0 in this case). Thus, Theorem 2.2 implies the result for the∞-server problem. �

As an important special case, we see that the∞-server problem isO (1)-competitive on weighted
stars; rooting a weighted star at the source leaf, it becomes a tree of depth 2.
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As shown in Reference [7], any algorithm for trees of depth D must have competitive ratio at
least Ω(logD), even if it uses randomization. Thus, there is a doubly-exponential gap between the
upper and lower bounds.

3.2 Non-discrete Spaces and Spaces with Small Infinite Subspaces

The following theorem gives a lower bound of 3.146 on the competitive ratio of the ∞-server
problem on any metric space containing an infinite subspace of a diameter that is small compared
to the subspace’s distance from the source. For example, every non-discrete metric space has this
property, since non-discrete metric spaces contain infinite subspaces of arbitrarily small diameter.
The theorem is a generalization of such a lower bound established in Reference [16] for a variant
of the paging problem where cache cells can be bought. Crucial parts of the subsequent proof are
as in Reference [16].

Theorem 3.2. Let M be a metric space containing an infinite subspace M0 ⊂ M of finite diameter

δ and a point s ∈ M \M0 such that the infimum Δ of distances between s and points in M0 is positive.

Let λ > 3.146 be the largest real solution to

λ = 2 + ln λ. (2)

The competitive ratio of any deterministic online algorithm for the ∞-server problem on (M, s ) is

bounded from below by a value that converges to λ as Δ/δ → ∞. In particular, the competitive ratio

is at least λ if M \ {s} contains a non-discrete part.

Proof. By scaling the metric, we can assume that δ = 1. Let p1,p2,p3, . . . be infinitely many
distinct points in M0.

Fix some lazy deterministic online algorithm ALG. We consider the request sequence that always
requests the pointpi with i minimal such thatpi is not occupied by a server of ALG. We call a move
of a server between two points in M0 local (i.e., every move that does not spawn is local). Let fj

be the cumulative cost of local moves incurred to ALG until it spawns its jth server. Let σk be this
request sequence that is stopped right after ALG spawns its kth server, for some large k . The total
online cost is

ALG(σk ) ≥ kΔ + fk . (3)

Let h = �k/λ�. We consider several offline algorithms that start behaving the same way, so
we think of it as one algorithm initially that is forked into several algorithms later. The offline
algorithms make use of only h servers and they begin by spawning them to the points p1, . . . ,ph .
They do not need to move any servers until ALG spawns its hth server. Whenever ALG spawns its
jth server for some j ≥ h, every offline algorithm is forked to h distinct algorithms: Each of them
moves a different server to pj+1 (to prepare for the next request, which will be at pj+1). We will
keep the invariant that each offline algorithm already has a server at the next request. To this end,
whenever ALG does a local move from p to p ′, every offline algorithm that does not have a server
at p moves a server from p ′ to p; note that the algorithm had a server at p ′ by the invariant, and
the next request will be at p.

When ALG has j spawned servers (j ≥ h), the offline algorithms are in ( j
h−1) different configu-

rations, each of which occurs equally often among them. If ALG does a local move from p to p ′,
then there are ( j−1

h−1) different offline configurations for which a local move is made in the oppo-
site direction. Thus, for each local move by ALG while having spawned j servers in total, a por-
tion ( j−1

h−1)/(
j

h−1)=
j−h+1

j of the offline algorithms move a server in the opposite direction for the same
cost.
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We use the average cost of all these offline algorithms as an upper bound on the optimal cost.
The cost of spawning h servers is at most h(Δ+ 1), and the average cost while ALG has j spawned

servers (for j = h, . . . ,k − 1) is at most j−h+1
j

( fj+1 − fj ) + 1 (with the “+1” coming from the move

when offline algorithms fork). Hence,

OPT(σk ) ≤ h(Δ + 1) + k − h +
k−1∑
j=h

j − h + 1

j
( fj+1 − fj ),

≤ hΔ + k +
k − h
k − 1

fk −
fh
h
−

k−1∑
j=h+1

h − 1

j (j − 1)
fj .

Note that
fk

k
is bounded from above, since otherwise ALG would not be competitive (because an

offline algorithm can spawn k servers at the start for cost at most k (Δ + 1) and pay no additional
cost in the period where ALG suffers cost fk for its local moves), and it is bounded from below

by 0. Thus, L = lim infk→∞
fk

k
is finite. In the following, we use the asymptotic notation o(1) for

terms (which might be negative) that disappear as k → ∞. We can choose arbitrarily large values

of k such that
fk

k
= L + o(1). Choosing k sufficiently large (so h = �k/λ� is sufficiently large), we

have
fj

j
≥ L + o(1) for all j ≥ h. Moreover,

∑k−1
j=h+1

1
j−1 = ln(λ) + o(1). This allows us to simplify

the previous bound to

OPT(σk ) ≤ k

λ
(Δ + λ + (λ − 1 − ln(λ))L + o(1))

=
k

λ
(Δ + L + λ + o(1)),

where the last step uses Equation (2).
The competitive ratio is at least

ALG(σk ) +O (1)

OPT(σk )
≥ kΔ + fk +O (1)

k
λ

(Δ + L + λ + o(1))

= λ · Δ + L

Δ + L + λ
+ o(1).

The O (1) term in the first expression ensures that the lower bound holds even for the non-strict
competitive ratio. The fraction in the last term tends to 1 as Δ→ ∞. �

This bound is tight due to a matching upper bound in Reference [16] that shows (translated to
the terminology of the∞-server problem) that a competitive ratio of λ can be achieved on metric
spaces where all pairwise distances are 1 except that the source is at some larger distance Δ from
the other points.

The previous theorem together with the equivalence theorem also allows us to obtain a new
lower bound for the k-server problem against weak adversaries.

Corollary 3.1. For sufficiently large h, there is no 3.146-competitive algorithm for the (h,k )-
server problem on the line, even if k → ∞.

Proof. By a scaling argument it is easy to see that if the ∞-server problem on the line is ρ-
competitive, then it is also strictly ρ-competitive. Thus, the statement follows from Theorems 2.2
and 3.2. �

This improves upon both the previous best known lower bounds of 2 for this problem on the
line [8, p. 175] and 2.4 on general metric spaces [4].
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3.3 Layered Graphs

A layered graph of depth D is a graph whose (potentially infinitely many) nodes can be arranged
in layers 0, 1, . . . ,D so all edges run between adjacent layers and each node—except for a single
node in layer 0—is connected to at least one node of the previous layer. The induced metric space
is the set of nodes with the distance being the minimal number of edges of a connecting path. For
the purposes of the ∞-server problem, the single node in layer 0 is the source. We assume D ≥ 2
to avoid trivial cases.

Note that a connected graph is layered if and only if it is bipartite. Moreover, any graph can be
embedded into a bipartite graph by adding a new node in the middle of each edge. So, essentially,
layered graphs capture all (unweighted) graph metrics.

Let Move Only Outwards (MOO) be some lazy and local algorithm for the ∞-server problem
on layered graphs that moves servers along edges only in the direction away from the source. Not
surprisingly, the competitive ratio of this simple algorithm is quite bad, and we show that it is
exactly D − 1/2. Nonetheless, at least for D ≤ 3 this is actually the optimal competitive ratio.

Theorem 3.3. The competitive ratio of MOO is exactly D − 1
2 .

Proof.
Upper bound: Consider some final configuration of the algorithm. Let nj be the number of servers
in the jth layer. Then the cost of MOO is

cost =

D∑
j=1

jnj .

To obtain a lower bound on OPT, observe that every node occupied by MOO in the final configu-
ration must have been visited by an offline server at least once. We account an offline cost of 1 for
each visit of a node on layers 1, . . . ,D − 2 and an offline cost of 2 for each visit of a node on layer
D. This cost of 2 covers the last two edge-traversals before visiting the layer-D-node, so this may
include serving a request on layer D − 1. If nD−1 > nD , then we can account another nD−1 − nD

cost for visiting the remaining at least nD−1 − nD requested nodes on layer D − 1. In summary,

OPT ≥
D−2∑
j=1

nj + 2nD + (nD−1 − nD )+,

where (nD−1−nD )+ := max{0,nD−1−nD }. The upper bound on the competitive ratio follows, since

cost

OPT
≤

∑D
j=1 jnj∑D−2

j=1 nj + 2nD + (nD−1 − nD )+

≤
(D − 2)

∑D−2
j=1 nj + (2D − 1)nD + (D − 1) (nD−1 − nD )+∑D−2

j=1 nj + 2nD + (nD−1 − nD )+

≤ D − 1

2
.

Lower bound: Let k,n ∈ N be some integers much larger than D. We construct the following
graph: Layers 0, . . . ,D − 2 consist of one node each and layers D − 1 and D consist of infinitely
many nodes each, denoted a0,a1,a2, . . . and b0,b1,b2, . . . , respectively. For each i ∈ N0, the k
nodes bik ,bik+1 . . . ,b(i+1)k−1 are adjacent to each of the 2k nodes aik ,aik+1,a (i+2)k−1 and to no
other nodes. The set of remaining edges is uniquely determined by the fact that this is a layered
graph of depth D.
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The request sequence consists of n rounds 0, 1, . . . ,n − 1, where each request in round i is at
a node from the list aik ,aik+1, . . . ,a (i+1)k−1,bik ,bik+1, . . . ,b(i+1)k−1. Round i starts with requests
on the nodes aik ,aik+1, . . . ,a (i+1)k−1. Then, for j = 0, . . . ,k − 1, the adversary first requests bik+j

and then requests whichever node from aik ,aik+1, . . . ,a (i+1)k−1 has been left by a MOO-server to
serve the request at bik+j . Note that by definition of MOO and the graph, the server it moves to
bik+j does indeed come from aik ,aik+1, . . . ,a (i+1)k−1.

In round i , MOO first pays k (D − 1) to move k servers to aik ,aik+1, . . . ,a (i+1)k−1 and then, for
each j = 0, . . . ,k − 1, it pays 1 to move to bik+j and D − 1 to spawn a new server at the group
aik ,aik+1, . . . ,a (i+1)k−1. Over n rounds this makes a total cost of n(k (D − 1) + k (1 + D − 1)) =
nk (2D − 1).

An offline algorithm can serve requests as follows: The requests at aik , . . . ,a (i+1)k−1 at the be-
ginning of round i are served by spawning if i = 0 (for cost (D − 1)k) and by sending servers from
b(i−1)k , . . . ,bik−1 if i ≥ 1 (for cost k). The request atbik is served by spawning3 a server (costD) and
the requests at bik+1, . . . ,bik+k−1 are served by sending a server from a node in aik , . . . ,a (i+1)k−1

that will not be requested any more (cost 1 each, so k − 1 per round). Over n rounds, this adds up
to an offline cost of (D − 1)k + (n − 1)k + n(D + k − 1) = 2nk + (D − 2)k + n(D − 1). The ratio of
online and offline cost is

nk (2D − 1)

2nk + (D − 2)k + n(D − 1)
=

2D − 1

2 + D−2
n
+ D−1

k

,

which gets arbitrarily close to D − 1
2 for n and k large enough. �

Theorem 3.4. The competitive ratio of the∞-server problem on layered graphs of depthD is exactly

1.5 for D = 2, exactly 2.5 for D = 3 and at least 3 for D ≥ 4.

Proof. For D = 2, the only possibility to move a server closer to the source is from layer 2 to
layer 1. But, since spawning to layer 1 is at least as good, we can restrict our attention to algorithms
of the type MOO. The result follows from Theorem 3.3.

For D = 3, the upper bound follows from Theorem 3.3. It remains to show the lower bounds for
D ≥ 3.

Fix some large integers k,n ∈ N. Consider the following layered graph of depth D: For i =
0, . . . ,D − 2 there exists a single node vi in layer i , and any pair of vertices (vi ,vi+1) is connected
by an edge. The remaining nodes are defined inductively as all nodes obtained by the following
two rules:

• There exist a set S0 of 2k nodes and sets AS0 and BS0 of k nodes.
• Let S be a set of 2k nodes such that AS and BS exist. Then for each S ′ ⊂ S ∪ BS of size 2k

there are sets AS ′ and BS ′ of k nodes.

The sets AS and BS are all disjoint from each other. The nodes in the sets AS are in layer D − 1, the
nodes in S0 and in the sets BS are in layer D. For a node in some set AS , the set of adjacent nodes
is S ∪ BS ∪ {vD−2} (see Figure 1).

For purposes of the analysis below, we further define a generation of a node as follows: The
nodes v0, . . . ,vD−1 and the nodes in S0 have generation 1. The generation of nodes in AS and BS

is the maximal generation of any node in S plus 1.
Let ALG be some online algorithm. We assume without loss of generality that ALG is lazy and

local.

3This is slightly sub-optimal, but it simplifies the description of the offline algorithm and suffices to obtain the tight lower

bound.
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Fig. 1. Inductive construction of a layered graph for the lower bounds for D ≥ 3 in Theorem 3.4. Thick bars

between two sets of vertices indicate that all vertices in one set are connected to all vertices of the other set.

The adversary chooses the following request sequence against ALG: First, it requests the nodes
in S0 until ALG has a server at each of them. The adversary also moves 2k servers to these nodes.
The adversary uses only these 2k servers for the entire sequence of requests. The remainder of
the requests consists of several rounds. We will keep the invariant that at the beginning of the ith
round, the 2k adversary servers occupy a set S for which AS and BS (with nodes of generation
i + 1) exist, and the online servers occupy nodes of generation at most i . Clearly this holds before
the first round. Let AS = {a1, . . . ,ak } and BS = {b1, . . . ,bk }.

The requests of the ith round are divided into part a and part b, consisting of steps a.1,. . . ,a.k ,
b.1,. . . ,b.k that are executed in this order. Step a.j consists of the following one or two requests:
First request aj . If ALG moves a server from some b ∈ S towards aj , then immediately request b.

We can assume that online servers cover AS after the end of part a (otherwise request nodes in
AS again at the end of part a until this is the case). Step b.j consists of the following two or three
requests: First request bj . Note that from each node of generation at most i , there exist shortest

paths to bj along any node from AS . Thus, since ALG is local, it will move a server from some

a ∈ AS towards bj . The second request of step b.j is at this node a and, if ALG moves a server from

some b ∈ S ∪ BS towards a, then the step contains a third request at b.
The adversary cost per round is at most 2k + 2: For each j = 1, . . . ,k , there are at least j nodes

in S that will not be requested during steps a.j, . . . , a.k , b.1, . . . , b.(k − 1). Hence, the adversary can
serve all requests of part a for cost k by moving k servers from S towardsAS while keeping servers
at all nodes of S that will be requested during the steps b.1,. . . ,b.(k − 1). Similarly, it can serve the
steps b.1,. . . ,b.(k − 1) for cost k − 1 by moving k − 1 servers from AS to BS . The final step b.k of the
round can be served at cost 3 using the last server in AS to serve the requests and finish with all
2k offline servers in some set S ′ ⊆ S ∪ BS .

We analyze the online cost for the cases D = 3 and D ≥ 4 separately.
If D = 3, then the cost for each step a.j is at least 2 and the cost for each step b.j is at least 3.

Thus, the cost per round is at least 5k . As k goes to infinity, the ratio of online and offline cost in
each round converges to 2.5. As the number of rounds goes to infinity, the online and offline costs
before the first round become negligible, which proves the lower bound of 2.5 for D = 3.

For D ≥ 4, we use a potential Φ equal to the number of online servers in layer D − 1. As
we consider different subsequences of requests, we write ΔΦ and Δcost for the change of Φ and
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the cost suffered by A, respectively, during this subsequence. During step a.j, either Φ does not
change and the cost is at least 2, or Φ increases by 1 and the cost is at least 3. Thus, during step
a.j, we have Δcost ≥ 2 + ΔΦ and hence during part a, we have Δcost ≥ 2k + ΔΦ. During step b.j,
either Φ decreases by 1 and the cost is at least 3, or Φ does not change and the cost is at least 4.
Thus, during part b, we have Δcost ≥ 4k + ΔΦ. In total, this adds up to Δcost ≥ 6k + ΔΦ during
the round. Over n rounds, this makes Δcost ≥ 6nk + ΔΦ ≥ 6nk , since Φ starts at 0 before the first
round and remains nonnegative. As k and n go to infinity, the ratio of our bounds on online and
offline cost converges to 3. �

It remains an open problem to close the gap between the lower bound of 3 and the upper bound
of 3.5 for D = 4. More importantly, we are interested in the question whether an algorithm better
than MOO exists for large D, achieving a competitive ratio of less than D − 1/2 on layered graphs
of depth D.

4 ALGORITHMS WITH UNBOUNDED COMPETITIVE RATIO

We examine the performance of classical algorithms known for the k-server problem when applied
to the∞-server problem. The main focus of this section is a generalization of the Double Coverage
algorithm for the line with adjusted server speeds. This idea has proved successful for the (h,k )-
server problem (and hence the∞-server problem) on weighted trees [4]. However, neither of these
algorithms is competitive for the ∞-server problem even on the line. We remark that it is not
known whether the unbounded lower bound from Reference [7] was shown for a tree where every
internal vertex has infinite degree, and it is not known whether this lower bound can be extended
to the line metric.

4.1 Work Function Algorithm

The Work Function Algorithm (WFA) [13] for the k-server problem achieves a competitive
ratio of at most 2k − 1, which is the best known upper bound for general metric spaces [23]. Given
a sequence of requests r1, r2, . . . and a configuration C (i.e., a multiset of server positions), the
work function wt (C ) is defined as the minimal cost of serving the first t requests and ending up
in configuration C . If Ct−1 is the server configuration before the t th request, then the algorithm
moves to a configuration Ct that contains rt and minimizes the quantity

wt (Ct ) + d (Ct−1,Ct ), (4)

where d (Ct−1,Ct ) is the cost of moving from Ct−1 to Ct .
Even though WFA is the best known deterministic algorithm for the k-server problem and has

proved useful for many other online problems, it fails for the ∞-server problem. Intuitively, the
weakness of WFA is that it chases the configuration of the optimal algorithm, and thus it makes
no attempt to outnumber the offline algorithm by using more servers. But if the online algorithm
uses only as many servers as the offline algorithm, then the k-server lower bounds apply and yield
an infinite competitive ratio for the∞-server problem.

Proposition 4.1. WFA is not competitive for the∞-server problem on the line.

Proof. Let the source be at 0 and, for some small δ > 0, let p1,p2, · · · ∈ [1, 1 + δ] be infin-
itely many distinct points. Consider the request sequence that always requests the point pi with i
minimal such that pi is not occupied by an online server. Let σk be the prefix of this request se-
quence until WFA spawns its kth server.

We claim that the optimal way of serving σk is to bring k servers to the points p1, . . . ,pk : Since
spawning a new server costs at least 1 and using an old server costs at most δ , WFA spawns a kth
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server only if the cost of spawning k servers to the points p1, . . . ,pk is at least 1 − δ less than the
optimal cost of using k − 1 servers to serve σk and end up at some fixed configuration of k − 1
points from {p1, . . . ,pk }. Moreover, the latter cost differs by at most δ from the optimal cost of
serving σk with k − 1 servers (without the requirement to end up in a particular configuration).
Hence, serving σk with k servers is at least 1−2δ less than doing so with k−1 servers. In particular,
the optimal way to service σk is to bring k servers to the points p1, . . . ,pk , as claimed. Therefore,

OPT(σk ) =
∑k

i=1 pi = k + o(1) as δ → 0.
Thus, the optimal offline cost increases by 1+o(1) during the period when WFA has k spawned

servers, and it increases by at least as much for an offline algorithm that is restricted to using k
servers only. Let costk be the cost incurred to WFA during this period. Due to the lower bound of
k on the competitive ratio of the k-server problem,4 costk is at least k times this increase of the
optimal cost (up to an additive error of o(1) as δ → 0), i.e., costk ≥ k + o(1). Thus, the total cost of
WFA given the request sequence σn is at least

n−1∑
k=1

costk = Ω(n2).

Meanwhile, the optimal cost is OPT(σn ) = n + o(1). Letting n tend to infinity, we obtain an un-
bounded competitive ratio. �

4.2 Balance and Balance2

The algorithm Balance serves a request r by sending a server x that minimizes the quantity Dx +

d (x , r ), where Dx is the cumulative distance traveled by x so far and d (x , r ) is the distance between
x and r . For the k-server problem, Balance is k-competitive on metric spaces with k +1 points [25]
and for weighted paging [11]. Young showed that for weighted paging against a weak adversary
with h servers the competitive ratio of Balance is k/(k − h + 1) [27]. On general metric spaces
however, Balance has unbounded competitive ratio, even if k = 2 [25]. It is therefore unsurprising
that it is also not competitive for the∞-server problem.

Proposition 4.2. Balance is not competitive for the∞-server problem on the line.

Proof. Suppose all servers start at source 0 and consider the request sequence r0, r1, r2, . . . , rn

where ri = 1− iϵ . As ϵ → 0, the optimal cost tends to 1 whereas the cost of Balance tends to n + 1.
Since n can be arbitrarily high, this shows an unbounded competitive ratio. �

The intuitive problem of Balance is that it is not greedy enough. The algorithm Balance2 by
Irani and Rubinfeld [19] compensates for this weakness by giving more weight to the distance
between the server and the request: To serve request r , Balance2 sends a server x that minimizes
the quantityDx+2d (x , r ). Irani and Rubinfeld showed that, unlike Balance, Balance2 is competitive
for two servers (achieving a competitive ratio of at most 10) and they conjectured that it is also
competitive for any other finite number of servers [19].

However, for the∞-server problem this algorithm is also not competitive:

Proposition 4.3. Balance2 is not competitive for the∞-server problem on the line.

Proof. Suppose the source is at 0 and fix some small constant ϵ > 0. The request sequence con-
sists of several phases, starting with phase 0. Phase i consists of alternating requests at 1 − 2iϵ

4The lower bound k for the k-server problem is achieved on any (k + 1)-point space by the request sequence that always

requests the one point not currently occupied by a server. Note that our constructed request sequence during the period

when WFA has k spawned servers is of this type on the (k + 1)-point space {p1, . . . , pk+1 }.
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and 1 − (2i + 1)ϵ . We will ensure that all requests of a phase are served by the same online
server, and we call this the active server. As soon as the cumulative distance traveled by the ac-
tive server exceeds 2 − (4i + 5)ϵ , the phase ends and a new phase begins. Note that this means
that the active server of a phase will not be used to serve any request of a subsequent phase be-
cause, by definition of Balance2, the algorithm would rather spawn a new server. Thus, the first
request of each phase is served by spawning a new server, which becomes the active server of
that phase. While the cumulative distance of the active server is at most 2 − (4i + 5)ϵ and, since
its distance from the next request of the current phase is always exactly ϵ , its associated quantity
Ds + 2d (s, r ) is at most 2 − (4i + 3)ϵ . Hence, Balance2 rather uses this server during the phase
instead of spawning a new server. Thus, it is indeed the active server that serves all requests of its
phase.

Let n be the number of phases and choose ϵ small enough so all requests are in the interval
[1/2, 1]. Thus, the cost of Balance2 is Ω(n).

An offline algorithm could serve all requests with two servers only that move to 1 and 1 − ϵ
initially and then back towards 1/2, always covering the two points that are requested during a
phase, resulting in an offline cost of less than 3. As n goes to infinity, the ratio between online and
offline cost becomes arbitrarily large. �

4.3 Double Coverage Variants

Perhaps more surprising than for WFA and balancing algorithms is that a class of algorithms
extending the Double Coverage (DC) algorithm [11] is also not competitive for the ∞-server
problem. The basic DC algorithm on the line serves each request by an adjacent server. If the
request lies between two servers, then both servers move towards it at equal speed until one of
them reaches the request. A sensible extension of this algorithm seems to be to give different
speeds to servers, so they move away from the source faster than towards it. This is motivated
by the idea that there is already an excess of servers at the source. It is similar to the algorithm
of Reference [4] for bounded depth trees, which moves servers faster if they come from a subtree
with many servers.

We consider here only the half-line [0,∞) with the source at the left border 0. Let xi be the
position of the ith server from the right. We use the notation xi both for its position and for the
server itself. As servers do not overtake each other, xi is the ith spawned server. Let S = {si ≥ 1 |
i = 2, 3, . . . } be a sequence of speeds si for moving to the right. The algorithm S-DC is defined as
follows:

• If there exist servers xi+1 and xi to the left and right of the request, then move them towards
it with speeds si+1 and 1, respectively, until one of the two reaches it.
• If a request does not have a server to its right, then move the rightmost server to the request.

If si = 1 for all i , then this is precisely the original DC algorithm.
We will prove that S-DC is not competitive for any monotonic (non-decreasing or non-

increasing) sequence of speeds. The intuitive reason is that servers move to the right either too
slowly or too quickly: Imagine repeatedly requesting the same n points in some small interval
away from the source, until S-DC covers all n points. One case is that S-DC spawns too slowly
and is therefore defeated by an adversary covering thesen positions immediately withn servers. In
the other case, the adversary will also use n servers to cover the initial group of requests and then
shift its group of servers slowly towards the source, always making requests at the new positions
of these offline servers. As S-DC tries to cover the new requests, it is tricked into spawning too
many servers. Both cases lead to an unbounded competitive ratio.
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The proof consists of several lemmas. The lemmas hold also for non-monotonic speeds and we
use monotonicity only to easily combine the lemmas in the end.

A useful property of S-DC is that its cost can be calculated using only the final positions of the
servers.

Lemma 4.4. Let x1 ≥ x2 ≥ . . . be the server positions of S-DC after serving a sequence of requests.

Then the cost paid is
∑∞

i=1 zixi where

z1 = 1 (5)

zi =
zi−1

si
+ 1 +

1

si
. (6)

Proof. The position xi of each server can be written as xi = ri − li where ri and li are the
cumulative distances traveled by that server while moving to the right and left, respectively. By
definition of S-DC, for all i , we have

li =
ri+1

si+1
,

since any right move (apart from the rightmost server) is accompanied by a left move of another
server. Observe that the online cost is

cost =

∞∑
i=1

(ri + li ) =
∞∑

i=1

(
ri +

ri+1

si+1

)

=

∞∑
i=1

ri +

∞∑
i=2

ri

si
= r1 +

∞∑
i=2

ri

(
1 +

1

si

)
. (7)

Similarly,

∞∑
i=1

zixi =

∞∑
i=1

zi (ri − li )

=

∞∑
i=1

ziri −
∞∑

i=1

zi
ri+1

si+1

= z1r1 +

∞∑
i=2

ri

(
zi −

zi−1

si

)
. (8)

By equating (7) and (8) term-by-term, we get the desired recurrence for zi . �

The next lemma takes care of the case when online servers spawn too slowly.

Lemma 4.5. If the speeds in S satisfy lim infn→∞
n
√∏n

i=2 si = 1, then S-DC is not competitive.

Proof. For this lower bound, we have requests on n arbitrary positions in the interval [1, 2],
until S-DC covers them all.

The optimal cost is at most 2n. This can be achieved by spawning a fresh server for each re-
quested position.
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Since for every spawned online server we have xi ≥ 1, by Lemma 4.4 the online cost is cost =∑n
i=1 zixi ≥

∑n
i=1 zi . Unraveling the recurrence, we get that zi = 1+ 2

si
+ 2

si si−1
+ · · ·+ 2

si ·... ·s2
. Thus,

cost ≥ n +
n−1∑
i=1

n−i∑
j=1

2∏j+i

k=j+1
sk

≥
f (n)∑
i=1

n−i∑
j=1

2∏j+i

k=j+1
sk

, (9)

where

f (n) =

⌊
n

2 + 2 log2

∏n
i=2 si

⌋
≤ n

2
.

We argue that for each i = 1, . . . , f (n), it holds for at least half of the values of j = 1, . . . ,n − i
that

∏j+i

k=j+1
sk ≤ 2. Indeed, suppose this were not the case for some i . Let us partition the set

J = {1, . . . ,n − i} of j-values into subsets J0, . . . , Ji−1, where Jm contains precisely those numbers

from J that are congruent to m modulo i . By assumption, we have
∏j+i

k=j+1
sk > 2 for at least half

the values j ∈ J , so this must also be true for at least half the values j ∈ Jm for some m. However,
this would mean that

n∏
k=2

sk ≥
∏
j ∈Jm

j+i∏
k=j+1

sk > 2 | Jm |/2 ≥ 2 �
n−i

i �/2 ≥ 2
n

2f (n ) −1 ≥
n∏

i=2

si ,

a contradiction, because the second inequality is strict.
Thus, continuing from Equation (9), we can further bound the online cost as

cost ≥ f (n)
n − f (n)

2
≥ nf (n)

4
.

Since the optimal cost is at most 2n, the competitive ratio is at least f (n)/8. However, f (n) is
unbounded because

n

2 + 2 log2

∏n
i=2 si

=
1

2
n
+ 2 log2

n
√∏n

i=2 si

and the denominator in the last term gets arbitrarily close to 0. �

The case of servers being spawned too aggressively is handled by the following lemma:

Lemma 4.6. If there exists an unbounded function f (n) such that for eachk ∈ Nwe have
∏k+n

i=k
si ≥

f (n), then S-DC is not competitive. In particular, if lim inf i→∞ si > 1, then S-DC is not competitive.

Proof. Consider the setup of server and request locations depicted in Figure 2. We start by
spawning n online servers grouped tightly, with the leftmost being at distance 1 from the source
and a small gap δ between them. This is easily accomplished by repeating several requests on those
points. Afterwards, we shift this group of n servers (by means of requests on new n + 1 points)
to the left by v1, chosen so the n + 1 points are covered exactly by the n old servers plus a newly
spawned one, which occupies the leftmost requested position 1 −v1 − δ .

Such a shift to the left is repeated again and again, shifting each time the leftmost n spawned
servers a new distance vk to the left via multiple requests on n + 1 positions. The goal each time
is to pull a new server from the source and leave one behind forever, thus achieving an arbitrarily
high competitive ratio for S-DC variants that spawn servers too fast.
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Fig. 2. Servers (denoted by circles) and request locations (denoted by crosses) in the first phase when S-DC

spawns too aggressively.

The offline cost can be calculated easily. The offline algorithm uses n servers to cover the first
group of n requested points in the interval [1, 1 + nδ]. Then it adds one more server and moves
the group of n + 1 servers to the left to satisfy all of the following requests. At most, the group of
offline servers will return close to the source, yielding an optimal cost of

OPT ≤ 2(n + 1) (1 + nδ ) = O (n), (10)

where the last bound holds for δ sufficiently small.
To bound the online cost, we need to compute the values vk first. Let �ki and rk

i denote the
cumulative distance to the left and right, respectively, traveled by xi during the left shift by vk of
the group xk ,xk+1, . . . ,xk+n−1. The nonzero values among these are

�kk = vk

rk
k+1 = vksk+1

�kk+1 = vk (1 + sk+1)

rk
k+2 = vk (sk+2 + sk+1sk+2)

�kk+2 = vk (1 + sk+2 + sk+1sk+2)

...

rk
k+n = vk

�	
sk+n + sk+n−1sk+n + · · · +
k+n∏

j=k+1

sj
��
 = vk

k+n∑
i=k+1

k+n∏
j=i

sj . (11)

However, the new position of the server xk+n pulled from the source during these moves is 1 −∑k
i=1vi − kδ . Equating this with Equation (11) and solving for vk yields (assuming that n is even)

vk =
1 −∑k

i=1vi − kδ∑k+n
i=k+1

∏k+n
j=i sj

≤ 1
n
2

∏k+n
j=k+ n

2
sj

≤ 2

nf ( n
2 )
.

We will calculate the number of repetitions before the left border of the group of servers (just)
passes 1

2 . If l is the number of repetitions, then we have

1

2
≤

l∑
k=1

(vk + δ ) ≤ 2l

n f ( n
2 )
+ lδ ,
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and for sufficiently small δ this means that

l ≥ n

5
f

(n
2

)
.

If we do l − 1 repetitions, then each of them will pull a new server at least 1/2 away from the
source, resulting in an online cost of Ω(n) · f ( n

2 ). As the offline cost isO (n) and f (n) is unbounded,
the algorithm is not competitive. �

If the sequence of speeds si is monotonic (non-decreasing or non-increasing), then we have ei-
ther limi→∞ si = 1, in which case Lemma 4.5 applies, or otherwise lim inf i→∞ si > 1 and Lemma 4.6
applies. In either case, the competitive ratio is unbounded:

Theorem 4.7. Algorithm S-DC is not competitive for any monotonic sequence of speeds.

5 REDUCTION TO BOUNDED SPACES

In this section, we show a reduction from the ∞-server problem on general metric spaces to
bounded subspaces. Specifically, a metric space can be partitioned into “rings” of points whose
distance from the source is between rn and rn+1, where r > 1 is fixed and n ∈ Z. We show that
if the∞-server problem is strictly ρ-competitive on each ring, then it is competitive on the entire
metric space.

Theorem 5.1. Let M be a metric space and s ∈ M and let r > 1. For n ∈ Z, let Mn = {s} ∪ {p ∈
M | d (s,p) ∈ [rn , rn+1)}. If for each n the∞-server problem on (Mn , s ) is strictly ρ-competitive, then

on (M, s ) it is strictly 3r−1
r−1 ρ-competitive.

Proof. Let ALGn be a ρ-competitive algorithm for the∞-server problem on (Mn , s ).
For a request sequence σ , let σn be the subsequence of requests in Mn . Let ALG be the algorithm

for (M, s ) that uses different servers for each of the subsequencesσn and serves them independently
according to ALGn .

The total online cost is ALG(σ ) =
∑

n ALGn (σn ) ≤ ρ
∑

n OPT(σn ). To finish the proof, it suffices
to show that ∑

n

OPT(σn ) ≤ 3r − 1

r − 1
OPT(σ ). (12)

Thus, we only need to analyze the offline cost. We do this for each offline server separately. Fix
some offline server x . Let N0 and N1 be the minimal and maximal values of n such that x visits
Mn . We can assume without loss of generality (by adding virtual points to the metric space) that
whenever x moves from Mn to Mn′ for some n < n′, it travels across points pn+1,pn+2, . . . ,pn′ with
d (s,pi ) = r i , and similarly for n > n′.

The movements of server x can be tracked by separate servers for the different sets Mn . We
denote the servers responsible for Mn by xn,1,xn,2, . . . in the order in which they are spawned.
When server x is in Mn , the last spawned server xn,t is exactly at the same position tracking the
movement of x . When server x exits Mn at some point p at the boundary to Mn−1 or Mn+1, this
server xn,t freezes at p. When x later re-enters Mn at a point p ′ at the same boundary, then either
xn,t moves to p ′ or a new server xn,t+1 is spawned to p ′—whichever is cheaper. The movement
cost of the servers xn,1,xn,2, . . . can be partitioned into the first spawn cost to spawn xn,1 at some
(possibly virtual) point on the boundary of Mn and Mn−1, the tracking cost to follow the movement
of x within Mn by the last spawned server xn,t , and the re-entering cost incurred to relocate xn,t

or spawn xn,t+1 when x re-enters Mn .
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The total tracking cost for all n is bounded by the distance traveled by x . The sum of first spawn

costs for all n is
∑N1

n=N0
rn ≤ ∑N1

n=−∞ r
n = rN1+1/(r −1), which is at most r

r−1 times the total distance

travelled by x , because the latter is at least rN1 .
Let us now consider the re-entering cost incurred when x enters Mn at p ′ after it previously

exited at p. Then p and p ′ are at the boundary of Mn and Mn+u for u ∈ {−1,+1}. The re-entering
cost is min{d (p,p ′),d (s,p ′)}. Let b be the distance traveled by x in Mn+u between the times when
it is entered at p and when it is next exited. If this exiting is at p ′, then the re-entering cost is at
most d (p,p ′) ≤ b by the triangle inequality. Otherwise, x exits Mn+u at a point p ′′ at the boundary
of Mn+u and Mn+2u . If u = 1, then b ≥ d (p,p ′′) ≥ d (s,p ′′) −d (s,p) = rn+2 − rn+1 = (r − 1)rn+1 and
the re-entering cost is at most d (s,p ′) = rn+1. If u = −1, then b ≥ d (p,p ′′) ≥ d (s,p) − d (s,p ′′) =
rn − rn−1 = r−1

r
rn and the re-entering cost is at most d (s,p ′) = rn . In all cases, the re-entering

cost is at most r
r−1b. Thus, the total re-entering cost of all servers xn is at most r

r−1 times the total
distance traveled by x .

Thus, the sum of first spawn, tracking and re-entering cost of the servers xn is at most 3r−1
r−1 times

the distance traveled by x . This shows Equation (12), giving the statement of the theorem. �

The last theorem can also be slightly generalized to the case where instead of strict ρ-
competitiveness, an additive term proportional to rn is allowed. It is not difficult to show the
following specialization for the line, where the premise can be weakened to require competitive-
ness only on a single interval:

Corollary 5.1. Let 0 < a < b. The∞-server problem is competitive on the line if and only if it is

competitive on ({0} ∪ [a,b], 0).

Another consequence of Theorem 5.1 is a reduction to spaces where the source is at a uniform
distance from all other points. This models the case of a fixed cost for “buying” new servers.

Corollary 5.2. Suppose there exists ρ so the ∞-server problem is strictly ρ-competitive on any

metric space where the distance from the source to any other point is the same. Then the ∞-server

problem on general metric spaces is competitive.

Proof. Follows from Theorem 5.1 by increasing the distance from s to the other points in Mn

to rn+1, making a multiplicative error of at most r . �

Because of the lower bound of Reference [7], we now know that such a ρ as required by the
premise of the corollary does not exist.

6 OPEN PROBLEMS

As stated earlier, the question whether the∞-server problem is competitive on every metric space
was resolved negatively in Reference [7]. For trees of depth D, they show that the competitive
ratio is at least Ω(logD). It seems likely that narrowing the doubly-exponential gap to the O (2D ·
D) upper bound from Theorem 3.1 would correspond to narrowing the gap for the (h,k )-server
problem as a function of h, currently between the Ω(log logh) shown in Reference [7] and the
O (h) following from the unaugmented setting.

The fact that the competitive ratio of the∞-server problem is finite on some metric spaces and
infinite on others poses the question of how to identify for a given metric space which of the two
is the case. Moreover, are there non-trivial upper bounds on the competitive ratio as a function
of the aspect ratio? Another interesting question is to determine the strict competitive ratio on
n-point metrics as a function of n.
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The lower bounds from Reference [7] give the same value for both deterministic and randomized
algorithms, whereas typically one may expect the deterministic competitive ratio to be exponen-
tially larger than the randomized one. A combinatorial argument, extending our lower bounds for
layered graphs to larger depths, may be a way to obtain larger lower bounds for the deterministic
setting.
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