2,562 research outputs found

    Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Get PDF
    The behavior of the nonlinear susceptibility χ3\chi_3 and its relation to the spin-glass transition temperature TfT_f, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT\lambda_{\rm AT} (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature TfT_f can be traced by a divergence in the spin-glass susceptibility χSG\chi_{\rm SG}, which presents a term inversely proportional to the replicon λAT\lambda_{\rm AT}. As a result of a relation between χSG\chi_{\rm SG} and χ3\chi_3, the latter also presents a divergence at TfT_f, which comes as a direct consequence of λAT=0\lambda_{\rm AT}=0 at TfT_f. However, our results show that, in the presence of random fields, χ3\chi_3 presents a rounded maximum at a temperature TT^{*}, which does not coincide with the spin-glass transition temperature TfT_f (i.e., T>TfT^* > T_f for a given applied random field). Thus, the maximum value of χ3\chi_3 at TT^* reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3\chi_3 still maintains a dependence on the replicon λAT\lambda_{\rm AT}, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHox_xY1x_{1-x}F4_4 compound.Comment: accepted for publication in PR

    High-speed noise-free optical quantum memory

    Full text link
    Quantum networks promise to revolutionise computing, simulation, and communication. Light is the ideal information carrier for quantum networks, as its properties are not degraded by noise in ambient conditions, and it can support large bandwidths enabling fast operations and a large information capacity. Quantum memories, devices that store, manipulate, and release on demand quantum light, have been identified as critical components of photonic quantum networks, because they facilitate scalability. However, any noise introduced by the memory can render the device classical by destroying the quantum character of the light. Here we introduce an intrinsically noise-free memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We consequently demonstrate for the first time successful storage of GHz-bandwidth heralded single photons in a warm atomic vapour with no added noise; confirmed by the unaltered photon statistics upon recall. Our ORCA memory platform meets the stringent noise-requirements for quantum memories whilst offering technical simplicity and high-speed operation, and therefore is immediately applicable to low-latency quantum networks

    The evolution of the axonal transport toolkit

    Get PDF
    Neurons are highly polarized cells that critically depend on long‐range, bidirectional transport between the cell body and synapse for their function. This continual and highly coordinated trafficking process, which takes place via the axon, has fascinated researchers since the early 20th century. Ramon y Cajal first proposed the existence of axonal trafficking of biological material after observing that dissociation of the axon from the cell body led to neuronal degeneration. Since these first indirect observations, the field has come a long way in its understanding of this fundamental process. However, these advances in our knowledge have been aided by breakthroughs in other scientific disciplines, as well as the parallel development of novel tools, techniques and model systems. In this review, we summarize the evolution of tools used to study axonal transport and discuss how their deployment has refined our understanding of this process. We also highlight innovative tools currently being developed and how their addition to the available axonal transport toolkit might help to address key outstanding questions

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure

    Primer registro de acumulaciones en masa de gastrópodos nerineidos en la Formación Agrio, Cretácico Inferior de Cuenca Neuquina, Argentina

    Get PDF
    El primer hallazgo de acumulaciones en masa de gastrópodos en la Formación Agrio proviene de la localidad de Lomas Bayas, Mendoza, Argentina. Las capas portadoras se ubican hacia el tope del Miembro Agua de la Mula. Su edad ha sido determinada como Hauteriviano Tardío cuspidal en base a la correlación con capas pertenecientes a la zona de amonoideos de Paraspiticeras groeberi. La asociación está compuesta por gastrópodos de la Familia Nerineidae. Las acumulaciones en masa se registraron en dos niveles estratigráficos distintos con una abundancia promedio de 300 conchillas por m2. Los ejemplares estudiados han sido determinados como Cossmannea (Eunerinea) sp. en base a los siguientes caracteres: conchilla cónica muy elongada, levemente cirtocónica, vueltas de caras planas a ligeramente cóncavas, región sutural suavemente convexa, corto canal anterior, abertura sub-cuadangular y tres pliegues internos (columelar, parietal y labial). Los especímenes se preservan como secciones axiales con conchilla recristalizada inmersas en la roca portadora y como moldes internos sueltos y fragmentarios. La gran mayoría se dispone en paralelo al plano de estratificación, con la abertura y/o ápice dañados, relleno concordante con la matriz y estructura geopetal. Estos rasgos tafonómicos sugieren un bajo grado de retrabajo y transporte lateral. Las rocas portadoras son grainstones oolíticos con rasgos de diagénesis marina somera. La presencia de fragmentos de corales coloniales y equinoideos asociados sugiere sustratos estables en probable cercanía con arrecifes en parche. Los nerineoideos son típicos de facies carbonáticas arrecifales y son considerados indicativos de condiciones tropicales a subtropicales. Si bien son frecuentes en depósitos mesozoicos, el hallazgo de acumulaciones en masa es en cambio excepcional y resulta de importancia paleoambiental y paleoecológica, dado que estaría relacionado al desarrollo de una estrategia de tipo oportunista bajo condiciones ambientales óptimas.Sesiones libresFacultad de Ciencias Naturales y Muse

    Effect of Loading Method on a Peptide Substrate Reporter in Intact Cells [post-print]

    Get PDF
    Studies of live cells often require loading of exogenous molecules through the cell membrane; however, effects of loading method on experimental results are poorly understood. Therefore, in this work, we compared three methods for loading a fluorescently labeled peptide into cells of the model organism Dictyostelium discoideum. We optimized loading by pinocytosis, electroporation, and myristoylation to maximize cell viability and characterized loading efficiency, localization, and uniformity. We also determined how the loading method affected measurements of enzyme activity on the peptide substrate reporter using capillary electrophoresis. Loading method had a strong effect on the stability and phosphorylation of the peptide. The half-life of the intact peptide in cells was 19 ± 2, 53 ± 15, and 12 ± 1 min, for pinocytosis, electroporation, and myristoylation, respectively. The peptide was phosphorylated only in cells loaded by electroporation. Fluorescence microscopy suggested that the differences between methods were likely due to differences in peptide localization

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length ξ\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of ξ\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.

    The Dynamical Behaviour of Test Particles in a Quasi-Spherical Spacetime and the Physical Meaning of Superenergy

    Full text link
    We calculate the instantaneous proper radial acceleration of test particles (as measured by a locally defined Lorentzian observer) in a Weyl spacetime, close to the horizon. As expected from the Israel theorem, there appear some bifurcations with respect to the spherically symmetric case (Schwarzschild), which are explained in terms of the behaviour of the superenergy, bringing out the physical relevance of this quantity in the study of general relativistic systems.Comment: 14 pages, Latex. 4 figures. New references added. Typos corrected. To appear in Int. J. Theor. Phy
    corecore