2,240 research outputs found

    The 25 October 2010 Mentawai tsunami earthquake (M_w 7.8) and the tsunami hazard presented by shallow megathrust ruptures

    Get PDF
    The 25 October 2010 Mentawai, Indonesia earthquake (M_w 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off-shore of Sumatra, generating 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite-fault source rupture characteristics indicate ∌90 s rupture duration with a low rupture velocity of ∌1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∌100 km long source region. The seismic moment-scaled energy release is 1.4 × 10^(−6), lower than 2.4 × 10^(−6) found for the 17 July 2006 Java tsunami earthquake (M_w 7.8). The Mentawai event ruptured up-dip of the slip region of the 12 September 2007 Kepulauan earthquake (M_w 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up-dip of great underthrusting events in Indonesia and elsewhere

    Finite Temperature Behavior of the Μ=1\nu=1 Quantum Hall Effect in Bilayer Electron Systems

    Full text link
    An effective field theoretic description of Μ=1\nu=1 bilayer electron systems stabilized by Coulomb repulsion in a single wide quantum well is examined using renormalization group techniques. The system is found to undergo a crossover from a low temperature strongly correlated quantum Hall state to a high temperature compressible state. This picture is used to account for the recent experimental observation of an anomalous transition in bilayer electron systems (T. S. Lay, {\em et al.} Phys. Rev. B {\bf 50}, 17725 (1994)). An estimate for the crossover temperature is provided, and it is shown that its dependence on electron density is in reasonable agreement with i the experiment.Comment: Corrected typos, and changed content, 5 pages and 2 figures, accepted in Phys. Rev.

    Brst Cohomology and Invariants of 4D Gravity in Ashtekar Variables

    Full text link
    We discuss the BRST cohomologies of the invariants associated with the description of classical and quantum gravity in four dimensions, using the Ashtekar variables. These invariants are constructed from several BRST cohomology sequences. They provide a systematic and clear characterization of non-local observables in general relativity with unbroken diffeomorphism invariance, and could yield further differential invariants for four-manifolds. The theory includes fluctuations of the vierbein fields, but there exits a non-trivial phase which can be expressed in terms of Witten's topological quantum field theory. In this phase, the descent sequences are degenerate, and the corresponding classical solutions can be identified with the conformally self-dual sector of Einstein manifolds. The full theory includes fluctuations which bring the system out of this sector while preserving diffeomorphism invariance.Comment: 15 page

    Quantum universal detectors

    Full text link
    We address the problem of estimating the expectation value of an arbitrary operator O via a universal measuring apparatus that is independent of O, and for which the expectation values for different operators are obtained by changing only the data-processing. The ``universal detector'' performs a joint measurement on the system and on a suitably prepared ancilla. We characterize such universal detectors, and show how they can be obtained either via Bell measurements or via local measurements and classical communication between system and ancilla.Comment: 4 pages, no figure

    Magnetic Anisotropy in Quantum Hall Ferromagnets

    Full text link
    We show that the sign of magnetic anisotropy energy in quantum Hall ferromagnets is determined by a competition between electrostatic and exchange energies. Easy-axis ferromagnets tend to occur when Landau levels whose states have similar spatial profiles cross. We report measurements of integer QHE evolution with magnetic-field tilt. Reentrant behavior observed for the Μ=4\nu = 4 QHE at high tilt angles is attributed to easy-axis anisotropy. This interpretation is supported by a detailed calculation of the magnetic anisotropy energy.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let

    Could One Find Petroleum Using Neutrino Oscillations in Matter?

    Get PDF
    In neutrino physics, it is now widely believed that neutrino oscillations are influenced by the presence of matter, modifying the energy spectrum produced by a neutrino beam traversing the Earth. Here, we will discuss the reverse problem, i.e. what could be learned about the Earth's interior from a single neutrino baseline energy spectrum, especially about the Earth's mantle. We will use a statistical analysis with a low-energy neutrino beam under very optimistic assumptions. At the end, we will note that it is hard to find petroleum with such a method, though it is not too far away from technical feasibility.Comment: 6 pages, 4 figures, EPL LaTeX. Final version to be published in Europhys. Let

    Anisotropic Transport of Quantum Hall Meron-Pair Excitations

    Full text link
    Double-layer quantum Hall systems at total filling factor ÎœT=1\nu_T=1 can exhibit a commensurate-incommensurate phase transition driven by a magnetic field B∄B_{\parallel} oriented parallel to the layers. Within the commensurate phase, the lowest charge excitations are believed to be linearly-confined Meron pairs, which are energetically favored to align with B∄B_{\parallel}. In order to investigate this interesting object, we propose a gated double-layer Hall bar experiment in which B∄B_{\parallel} can be rotated with respect to the direction of a constriction. We demonstrate the strong angle-dependent transport due to the anisotropic nature of linearly-confined Meron pairs and discuss how it would be manifested in experiment.Comment: 4 pages, RevTex, 3 postscript figure

    Searching for coronal radio emission from protostars using Very-Long-Baseline Interferometry

    Full text link
    In order to directly study the role of magnetic fields in the immediate vicinity of protostars, we use Very-Long-Baseline Interferometry (VLBI), aiming at the detection of non-thermal centimetric radio emission. This is technically the only possibility to study coronal emission at sub-AU resolution. We performed VLBI observations of the four nearby protostars HL Tau, LDN 1551 IRS5, EC 95, and YLW 15 in order to look for compact non-thermal centimetric radio emission. For maximum sensitivity, we used the High Sensitivity Array (HSA) where possible, involving the Very Long Baseline Array (VLBA), the phased Very Large Array (VLA), as well as the Arecibo, Green Bank, and Effelsberg radio telescopes. While all four protostars were detected in VLA-only data, only one source (YLW 15 VLA 2) was detected in the VLBI data. The possibility of non-detections due to free-free absorption, possibly depending on source geometry, is considered. For YLW 15 VLA 2, the prospects for an accurate orbit determination appear to be good.Comment: 8 pages, 4 figures, accepted for publication in A&
    • 

    corecore