543 research outputs found

    Speciation and fate of copper in sewage treatment works with and without tertiary treatment: The effect of return flows

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.The removal of metals from wastewaters is becoming an important issue, with new environmental quality standards putting increased regulatory pressure on operators of sewage treatment works. The use of additional processes (tertiary treatment) following two-stage biological treatment is frequently seen as a way of improving effluent quality for nutrients and suspended solids, and this study investigates the impact of how back washes from these tertiary processes may impact the removal of copper during primary sedimentation. Seven sites were studied, three conventional two-stage biological treatment, and four with tertiary processes. It was apparent that fluxes of copper in traditional return flows made a significant contribution to the load to the primary treatment tanks, and that<1% of this was in the dissolved phase. Where tertiary processes were used, back wash liquors were also returned to the primary tanks. These return flows had an impact on copper removal in the primary tanks, probably due to their aerobic nature. Returning such aerobic back wash flows to the main process stream after primary treatment may therefore be worth consideration. The opportunity to treat consolidated liquor and sludge flows in side-stream processes to remove toxic elements, as they are relatively concentrated, low volume flow streams, should also be evaluated

    Metastasis-inducing proteins are widely expressed in human brain metastases and associated with intracranial progression and radiation response

    Get PDF
    Background:Understanding the factors that drive recurrence and radiosensitivity in brain metastases would improve prediction of outcomes, treatment planning and development of therapeutics. We investigated the expression of known metastasis-inducing proteins in human brain metastases.Methods:Immunohistochemistry on metastases removed at neurosurgery from 138 patients to determine the degree and pattern of expression of the proteins S100A4, S100P, AGR2, osteopontin (OPN) and the DNA repair marker FANCD2. Validation of significant findings in a separate prospective series with the investigation of intra-tumoral heterogeneity using image-guided sampling. Assessment of S100A4 expression in brain metastatic and non-metastatic primary breast carcinomas.Results:There was widespread staining for OPN, S100A4, S100P and AGR2 in human brain metastases. Positive staining for S100A4 was independently associated with a shorter time to intracranial progression after resection in multivariate analysis (hazard ratio for negative over positive staining=0.17, 95% CI: 0.04-0.74, P=0.018). S100A4 was expressed at the leading edge of brain metastases in image guided sampling and overexpressed in brain metastatic vs non-brain metastatic primary breast carcinomas. Staining for OPN was associated with a significant increase in survival time after post-operative whole-brain radiotherapy in retrospective (OPN negative 3.43 months, 95% CI: 1.36-5.51 vs OPN positive, 11.20 months 95% CI: 7.68-14.72, Log rank test, P<0.001) and validation populations.Conclusions:Proteins known to be involved in cellular adhesion and migration in vitro, and metastasis in vivo are significantly expressed in human brain metastases and may be useful biomarkers of intracranial progression and radiosensitivity

    A New Proposal for the Picture Changing Operators in the Minimal Pure Spinor Formalism

    Full text link
    Using a new proposal for the "picture lowering" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green's function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.Comment: 56 pages, typos correcte

    Status and Future Aspects of X-Ray Backscatter Imaging

    Get PDF
    Since the market introduction of the commercial system ComScan 160 [1] X-ray backscatter imaging has become an established inspection technique in certain areas of nondestructive testing, e.g. corrosion inspection on aircrafts. Several preceding publications on X-ray backscatter imaging have been focussed on the current status of the ComScan system and on topical applications [2,3,4]. In the present article the horizon shall be opened to all relevant results which have been obtained worldwide with X-ray backscatter techniques. Due to space limitations it is certainly not possible to give a complete overview, but some selected results will be reported. In reference [5] additional information and many references to this topic can be found. Furthermore, in that work reference is also given to the patent situation. Additionally to this, an overview on the history of X-ray backscatter techniques, on physical and technical foundations of the techniques and its numerous variations will be given in chapter 3.1.5 of the to-be-published handbook on NDT [6] (in German).</p

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    The Breast Cancer and the Environment Research Centers: Transdisciplinary Research on the Role of the Environment in Breast Cancer Etiology

    Get PDF
    ObjectivesWe introduce and describe the Breast Cancer and the Environment Research Centers (BCERC), a research network with a transdisciplinary approach to elucidating the role of environmental factors in pubertal development as a window on breast cancer etiology. We describe the organization of four national centers integrated into the BCERC network.Data sourcesInvestigators use a common conceptual framework based on multiple levels of biologic, behavioral, and social organization across the life span. The approach connects basic biologic studies with rodent models and tissue culture systems, a coordinated multicenter epidemiologic cohort study of prepubertal girls, and the integration of community members of breast cancer advocates as key members of the research team to comprise the network.Data extractionRelevant literature is reviewed that describes current knowledge across levels of organization. Individual research questions and hypotheses in BCERC are driven by gaps in our knowledge that are presented at genetic, metabolic, cellular, individual, and environmental (physical and social) levels.Data synthesisAs data collection on the cohort, animal experiments, and analyses proceed, results will be synthesized through a transdisciplinary approach.ConclusionCenter investigators are addressing a large number of specific research questions related to early pubertal onset, which is an established risk factor for breast cancer. BCERC research findings aimed at the primary prevention of breast cancer will be disseminated to the scientific community and to the public by breast cancer advocates, who have been integral members of the research process from its inception

    The endoplasmic reticulum stress marker CHOP predicts survival in malignant mesothelioma.

    Get PDF
    BACKGROUND: Mesothelioma is an incurable cancer originating from the mesothelial cells that line the pleural, peritoneal and pericardial cavities. These cells synthesise large quantities of surface glycoproteins, rendering them dependent upon efficient endoplasmic reticulum (ER) function. When faced with elevated levels of secretory protein load, cells are said to experience ER stress, which has been implicated in the pathogenesis of many human diseases including cancer. METHOD: We set out to measure markers of ER stress in malignant mesothelioma and to determine whether ER stress signalling correlates with clinical parameters. RESULTS: We observed that expression of the ER stress-responsive transcription factor C/EBP homologous protein (CHOP) correlated with patient survival and remained an independent prognostic variable in pairwise comparisons with all clinical variables tested. The most parsimonious multivariate model in our study comprised only performance status and CHOP staining. In contrast, expression of the ER stress-responsive phosphatase growth arrest and DNA damage 34 (GADD34) correlated with the degree of mesothelial differentiation, being lost progressively in biphasic and sarcomatoid mesotheliomas. CONCLUSION: Our findings suggest that staining for CHOP provides prognostic information that may be useful in the stratification of patients with mesothelioma. Staining for GADD34 may prove useful in classification of mesothelioma histopathology

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal
    corecore