31 research outputs found

    Effect of Training on the Reliability of Satiety Evaluation and Use of Trained Panellists to Determine the Satiety Effect of Dietary Fibre: A Randomised Controlled Trial

    Get PDF
    Background: The assessment of satiety effects on foods is commonly performed by untrained volunteers marking their perceived hunger or fullness on line scales, marked with pre-set descriptors. The lack of reproducibility of satiety measurement using this approach however results in the tool being unable to distinguish between foods that have small, but possibly important, differences in their satiety effects. An alternate approach is used in sensory evaluation; panellists can be trained in the correct use of the assessment line-scale and brought to consensus on the meanings of descriptors used for food quality attributes to improve the panel reliability. The effect of training on the reliability of a satiety panel has not previously been reported. Method: In a randomised controlled parallel intervention, the effect of training in the correct use of a satiety labelled magnitude scale (LMS) was assessed versus no-training. The test-retest precision and reliability of two hour postprandial satiety evaluation after consumption of a standard breakfast was compared. The trained panel then compared the satiety effect of two breakfast meals containing either a viscous or a non-viscous dietary fibre in a crossover trial.Results: A subgroup of the 23 panellists (n = 5) improved their test re-test precision after training. Panel satiety area under the curve, “after the training” intervention was significantly different to “before training” (p < 0.001). Reliability of the panel determined by intraclass correlation (ICC) of test and retest showed improved strength of the correlation from 0.70 pre-intervention to 0.95 post intervention. The trained “satiety expert panel” determined that a standard breakfast with 5g of viscous fibre gave significantly higher satiety than with 5g non-viscous fibre (area under curve (AUC) of 478.2, 334.4 respectively) (p ≀ 0.002). Conclusion: Training reduced between panellist variability. The improved strength of test-retest ICC as a result of the training intervention suggests that training satiety panellists can improve the discriminating power of satiety evaluation

    New herbal bitter liqueur with high antioxidant activity and lower sugar content: innovative approach to liqueurs formulations

    Get PDF
    Herbal liqueurs are spirits with numerous functional properties, due to the presence of bioactive extractable compounds deriving from herbs. The aim of this study was to obtain new herbal bitter liqueur (HBL) on the basis of twelve selected bitter and aromatic plants extracts, with an optimal sensory profile for consumer acceptance. Also, the determination of optimal sugar content in HBL was done. Furthermore, antioxidant (AO) capacity and total phenolic content (TPC) of HBL was evaluated and compared to similar commercial herbal spirits. Among five tested formulations, assessed by 9-point hedonic scale, HBL with the ratio of bitter and aromatic plants 1:4 was the most acceptable. Ideal concentration of sugar in HBL, determined using a just-about-right scale, was found to be 80.32 g/l of sucrose, which is approximately 20% less than the minimum stipulated by European Union Regulation and several times lower than in the majority of commercial liqueurs. Obtained result indicates the possibility of sugar reduction in liqueurs, and suggests the need to carry out sensory analysis before production of these high-calorie beverages. Radical scavenging ability against DPPH and ABTS radicals, as well as ferric reducing antioxidant power and TPC of HBL were convincingly superior in comparison to similar commercial herbal alcoholic beverages. High correlation coefficients between TPC and other assays applied strongly support the significant role of the polyphenols in the total AO capacity of the HBL and other tested commercial herbal spirits. Headspace GC/MS revealed that the most abundant terpenes were menthone (3.75%), eucalyptol (3.42%) and menthol (3.10%), whereas methanol was present in a small amount (4.97 mg/l)

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    Consumer acceptability and perceptions of maize meal in Giyani, South Africa

    No full text
    This study examined the acceptability and perceptions of traditionally prepared maize meal porridge, cooked from commercial roller-mill white maize meal and hammer-mill white and yellow maize meal (with and without fibre), among female Tsonga consumers in Giyani in Limpopo Province, South Africa. The study used sensory evaluation tests, followed by focus group discussions to gather supportive information about consumer attitudes, perceptions and practices regarding the consumption of maize meal porridge prepared from these maize meal types. Giyani consumers preferred commercial roller-mill white sifted fortified and white super-fortified maize meal, but, contrary to popular belief, were also willing to accept hammer-mill yellow maize meal, mainly for its nutritional value.maize meal porridge, sensory evaluation, perceptions, consumer acceptance,

    Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Rα gene during Th1 differentiation

    No full text
    Stat4 is required for Th1 development, although how a transiently activated factor generates heritable patterns of gene expression is still unclear. We examined the regulation of IL-18Rα expression to define a mechanism for Stat4-dependent genetic programming of a Th1-associated gene. Although Stat4 binds the Il18r1 promoter following IL-12 stimulation and transiently increases acetylated histones H3 and H4, patterns of histone acetylation alone in Th1 cells may not be sufficient to explain cell-type-specific patterns of gene expression. The level of DNA methylation and recruitment of Dnmt3a to Il18r1 inversely correlate with IL-18Rα expression, and blocking DNA methylation increases IL-18Rα expression. Moreover, there was decreased Il18r1–Dnmt3a association and DNA methylation following transient trichostatin A-induced histone hyperacetylation in Stat4−/−Th1 cultures. Increased association of Dnmt3a and the Dnmt3a cofactor Dnmt3L with the promoters of several Stat4-dependent genes was found in Stat4−/− Th1 cultures, providing a general mechanism for Stat4-dependent gene programming. These data support a mechanism wherein the transient hyperacetylation induced by Stat4 prevents the recruitment of DNA methyltransferases and the subsequent repression of the Il18r1 locus
    corecore