616 research outputs found

    The Non-homogeneous Poisson Process for Fast Radio Burst Rates

    Get PDF
    This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model changes in the rate as a function of both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patterns and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 586.88 events per sky per day above a flux of 1 Jy (95\% CI: 271.86, 923.72) and a flux power-law index of 0.91 (95\% CI: 0.57, 1.25). Our rate is lower than other published rates, but consistent with the rate given in Champion et al. 2016.Comment: 19 pages, 2 figure

    Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach

    Get PDF
    We report the detection of 72 new pulses from the repeating fast radio burst FRB 121102 in Breakthrough Listen C-band (4-8 GHz) observations at the Green Bank Telescope. The new pulses were found with a convolutional neural network in data taken on August 26, 2017, where 21 bursts have been previously detected. Our technique combines neural network detection with dedispersion verification. For the current application we demonstrate its advantage over a traditional brute-force dedis- persion algorithm in terms of higher sensitivity, lower false positive rates, and faster computational speed. Together with the 21 previously reported pulses, this observa- tion marks the highest number of FRB 121102 pulses from a single observation, total- ing 93 pulses in five hours, including 45 pulses within the first 30 minutes. The number of data points reveal trends in pulse fluence, pulse detection rate, and pulse frequency structure. We introduce a new periodicity search technique, based on the Rayleigh test, to analyze the time of arrivals, with which we exclude with 99% confidence pe- riodicity in time of arrivals with periods larger than 5.1 times the model-dependent time-stamp uncertainty. In particular, we rule out constant periods >10 ms in the barycentric arrival times, though intrinsic periodicity in the time of emission remains plausible.Comment: 32 pages, 10 figure

    Kinematic and tectonic significance of microstructures and crystallographic fabrics within quartz mylonites from the Assynt and Eriboll regions of the Moine thrust zone, NW Scotland

    Get PDF
    Using a combination of optical microscopy and X-ray texture goniometry, an integrated microstructural and crystallographic fabric study has been made of quartz mylonites from thrust sheets located beneath, but immediately adjacent to, the Moine thrust in the Assynt and Eriboll regions of NW Scotland. A correlation is established between shape fabric symmetry and pattern of crystallographic preferred orientation, a particularly clear relationship being observed between shape fabric variation and quartz a-axis fabrics. Coaxial strain paths dominate the internal parts of the thrust sheets and are indicated by quartz c- and a-axis fabrics which are symmetrical with respect to foliation and lineation. Non-coaxial strain paths are indicated within the more intensely deformed quartzites located near the boundaries of the sheets by asymmetrical c- and a-axis fabrics. These kinematic interpretations are supported by microstructural studies. At the Stack of Glencoul in the northern part of the Assynt region, the transition zone between these kinematic (strain path) domains is located at approximately 20 cm beneath the Moine thrust and is marked by a progression from symmetrical cross-girdle c-axis fabrics (30cm beneath the thrust), through asymmetrical cross-girdle c-axis fabrics to asymmetrical single girdle c-axis fabrics (0·5 cm beneath the thrust). Tectonic models (incorporating processes such as extensional flow, gravity spreading and tectonic loading) which may account for the presence of strain path domains within the thrust sheets are considered, and their compatibility with local thrust sheet geometries assesse

    All Transients, All the Time: Real-Time Radio Transient Detection with Interferometric Closure Quantities

    Full text link
    We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibration independent, resistant to interference, and computationally efficient, so it can be built into correlators for real-time transient detection. Our technique could find celestial transients anywhere in the field of view and localize them to arcsecond precision. At the Karl G. Jansky Very Large Array (VLA), such a system would have a high survey speed and a 5-sigma sensitivity of 38 mJy on 10 ms timescales with 1 GHz of bandwidth. The ability to localize dispersed millisecond pulses to arcsecond precision in large volumes of interferometer data has several unique science applications. Localizing individual pulses from Galactic pulsars will help find X-ray counterparts that define their physical properties, while finding host galaxies of extragalactic transients will measure the electron density of the intergalactic medium with a single dispersed pulse. Exoplanets and active stars have distinct millisecond variability that can be used to identify them and probe their magnetospheres. We use millisecond time scale visibilities from the Allen Telescope Array (ATA) and VLA to show that the bispectrum can detect dispersed pulses and reject local interference. The computational and data efficiency of the bispectrum will help find transients on a range of time scales with next-generation radio interferometers.Comment: Accepted to ApJ. 8 pages, 5 figures, 2 tables. Revised to include discussion of non-Gaussian statistics of techniqu

    Wild at Heart:-The Particle Astrophysics of the Galactic Centre

    Full text link
    We treat of the high-energy astrophysics of the inner ~200 pc of the Galaxy. Our modelling of this region shows that the supernovae exploding here every few thousand years inject enough power to i) sustain the steady-state, in situ population of cosmic rays (CRs) required to generate the region's non-thermal radio and TeV {\gamma}-ray emis-sion; ii) drive a powerful wind that advects non-thermal particles out of the inner GC; iii) supply the low-energy CRs whose Coulombic collisions sustain the temperature and ionization rate of the anomalously warm, envelope H2 detected throughout the Cen-tral Molecular Zone; iv) accelerate the primary electrons which provide the extended, non-thermal radio emission seen over ~150 pc scales above and below the plane (the Galactic centre lobe); and v) accelerate the primary protons and heavier ions which, advected to very large scales (up to ~10 kpc), generate the recently-identified WMAP haze and corresponding Fermi haze/bubbles. Our modelling bounds the average magnetic field amplitude in the inner few degrees of the Galaxy to the range 60 < B/microG < 400 (at 2 sigma confidence) and shows that even TeV CRs likely do not have time to penetrate into the cores of the region's dense molecular clouds before the wind removes them from the region. This latter finding apparently disfavours scenarios in which CRs - in this star-burst-like environment - act to substantially modify the conditions of star-formation. We speculate that the wind we identify plays a crucial role in advecting low-energy positrons from the Galactic nucleus into the bulge, thereby explaining the extended morphology of the 511 keV line emission. (abridged)Comment: One figure corrected. Accepted for publication in MNRAS. 29 pages, 14 figure

    The RRAT Trap: Interferometric Localization of Radio Pulses from J0628+0909

    Full text link
    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array (VLA) to produce correlated data products (i.e., visibilities and images) on a time scale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.6". With a priori knowledge of the RRAT location, a traditional beamforming search of the same data found two, lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L_i'<1.1x10^31 erg/s and excluding its association with a young, luminous neutron star.Comment: Submitted to ApJ, 7 pages, 5 figure

    Assessing Moral Injury and its Clinical Associations in a UK Secure Care Population

    Get PDF
    © 2023 American Psychological Association. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1037/trm0000480Introduction: Moral Injury (MI) represents a type of trauma that can manifest after committing or witnessing transgressions which result in feelings of shame, guilt, and inner turmoil. Although originally conceived and researched in military settings, emerging research has focused on broader populations including health professionals, social workers, police, and prison staff. Few empirical studies have focused on service-user populations, especially those in forensic clinical settings despite the risk factors associated with these groups. Method: This cross-sectional study assessed the presence of MI along with its clinical associations among a UK forensic secure care sample (n=38). It used a series of brief psychometric tools including a modified Moral Injury Event Scale (MIES), International Trauma Questionnaire (ITQ), Recovering Quality of Life (ReQoL-20), State Shame and Guilt Scale (SSGS), and Self-Compassion Scale-Short Form (SCS-SF). Results: MI was endorsed by most participants (89.5%) with an overall moderate-to-high level rating (M=38.2). Other-transgressions (M=9.2) and betrayal (M=13.6) were relatively higher compared with self-transgressions (M=15.4) based on possible maximum sub-domain scores. The overall MI scores were associated with ratings of trauma (r=.550), guilt (r=.470), and poorer quality-of-life (r=-.341), though not shame or self-compassion (p>.05). Regression analyses revealed a moderate contribution of ITQ scores in MIES score variability. Discussion: MI scores were similar to or higher than other populations from across the literature demonstrating a high presence of potentially morally injurious events and related distress among the sample. The findings support the need for trauma-based assessments of moral emotional experiences within a forensic secure care context.Peer reviewe
    • …
    corecore