109 research outputs found
Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
<p>Abstract</p> <p>Background</p> <p>In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color <it>in situ </it>hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD) activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected.</p> <p>Results</p> <p>We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA). Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent <it>in situ </it>hybridization (FISH) experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts in different colors in whole-mount zebrafish embryos.</p> <p>Conclusions</p> <p>Development of a multicolor FISH procedure allowed the comparison of transcript gene expression domains in the embryonic zebrafish brain to a cellular level. Likewise, this method should be applicable for mRNA colocalization studies in any other tissues or organs. The key optimization steps of this method for use in zebrafish can easily be implemented in whole-mount FISH protocols of other organisms. Moreover, our improved reaction conditions may be beneficial in any application that relies on a TSA/POD-mediated detection system, such as immunocytochemical or immunohistochemical methods.</p
Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems
<p>Abstract</p> <p>Background</p> <p>Whole-mount <it>in situ </it>hybridization (WISH) is extensively used to characterize gene expression patterns in developing and adult brain and other tissues. To obtain an idea whether a novel gene might be involved in specification of a distinct brain subdivision, nucleus or neuronal lineage, it is often useful to correlate its expression with that of a known regional or neuronal marker gene. Two-color fluorescent <it>in situ </it>hybridization (FISH) can be used to compare different transcript distributions at cellular resolution. Conventional two-color FISH protocols require two separate rounds of horseradish peroxidase (POD)-based transcript detection, which involves tyramide signal amplification (TSA) and inactivation of the first applied antibody-enzyme conjugate before the second detection round.</p> <p>Results</p> <p>We show here that the alkaline phosphatase (AP) substrates Fast Red and Fast Blue can be used for chromogenic as well as fluorescent visualization of transcripts. To achieve high signal intensities we optimized embryo permeabilization properties by hydrogen peroxide treatment and hybridization conditions by application of the viscosity-increasing polymer dextran sulfate. The obtained signal enhancement allowed us to develop a sensitive two-color FISH protocol by combining AP and POD reporter systems. We show that the combination of AP-Fast Blue and POD-TSA-carboxyfluorescein (FAM) detection provides a powerful tool for simultaneous fluorescent visualization of two different transcripts in the zebrafish brain. The application of different detection systems allowed for a one-step antibody detection procedure for visualization of transcripts, which significantly reduced working steps and hands-on time shortening the protocol by one day. Inactivation of the first applied reporter enzyme became unnecessary, so that false-positive detection of co-localization by insufficient inactivation, a problem of conventional two-color FISH, could be eliminated.</p> <p>Conclusion</p> <p>Since POD activity is rather quickly quenched by substrate excess, less abundant transcripts can often not be efficiently visualized even when applying TSA. The use of AP-Fast Blue fluorescent detection may provide a helpful alternative for fluorescent transcript visualization, as the AP reaction can proceed for extended times with a high signal-to-noise ratio. Our protocol thus provides a novel alternative for comparison of two different gene expression patterns in the embryonic zebrafish brain at a cellular level. The principles of our method were developed for use in zebrafish but may be easily included in whole-mount FISH protocols of other model organisms.</p
Comprehensive analysis of gene expression patterns of hedgehog-related genes
BACKGROUND: The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh)-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. RESULTS: With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the efficacy of our GFP expression effort with EST, OST and SAGE data. CONCLUSION: No bona-fide Hh signaling pathway is present in C. elegans. Given that the hh-related gene products have a predicted signal peptide for secretion, it is possible that they constitute components of the extracellular matrix (ECM). They might be associated with the cuticle or be present in soluble form in the body cavity. They might interact with the Patched or the Patched-related proteins in a manner similar to the interaction of Hedgehog with its receptor Patched
Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs
DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.Peer reviewe
Differentiation of ciliated human midbrain-derived LUHMES neurons
Many human cell types are ciliated, including neural progenitors and differentiated neurons. Ciliopathies are characterized by defective cilia and comprise various disease states, including brain phenotypes, where the underlying biological pathways are largely unknown. Our understanding of neuronal cilia is rudimentary, and an easy-to-maintain, ciliated human neuronal cell model is absent. The Lund human mesencephalic (LUHMES) cell line is a ciliated neuronal cell line derived from human fetal mesencephalon. LUHMES cells can easily be maintained and differentiated into mature, functional neurons within one week. They have a single primary cilium as proliferating progenitor cells and as postmitotic, differentiating neurons. These developmental stages are completely separable within one day of culture condition change. The sonic hedgehog (SHH) signaling pathway is active in differentiating LUHMES neurons. RNA-sequencing imecourse analyses reveal molecular pathways and gene-regulatory networks critical for ciliogenesis and axon outgrowth at the interface between progenitor cell proliferation, polarization and neuronal differentiation. Gene expression dynamics of cultured LUHMES neurons faithfully mimic the corresponding in vivo dynamics of human fetal midbrain. In LUHMES cells, neuronal cilia biology can be investigated from proliferation through differentiation to mature neurons.Peer reviewe
Characterization of the human RFX transcription factor family by regulatory and target gene analysis
Background:
Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1–8), their spatial and temporal expression profiles, potential upstream regulators and target genes.
Results:
We extracted all known human RFX1–8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1–3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes.
Conclusions:
The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.Medicine, Faculty ofOther UBCNon UBCMedical Genetics, Department ofReviewedFacult
Primary cilia promote the differentiation of human neurons through the WNT signaling pathway
Background Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell’s immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. Results We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation “ciliary time window” during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. Conclusions We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in “mild” impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders
- …