89 research outputs found

    Inverse Semigroupoid Actions and Representations

    Full text link
    We show that there is a one-to-one correspondence between the partial actions of a groupoid GG on a set XX and the inverse semigroupoid actions of the inverse semigroupoid S(G)S(G) on XX. We also define inverse semigroupoid representations on a Hilbert space HH, as well as the Exel's partial groupoid C∗C^*-algebra Cp∗(G)C_p^*(G), and we prove that there is a one-to-one correspondence between partial groupoid representations of GG on HH, inverse semigroupoid representations of S(G)S(G) on HH and C∗C^*-algebra representations of Cp∗(G)C_p^*(G) on HH

    Effects of Proton Center Closure on Pediatric Case Volume and Resident Education at an Academic Cancer Center

    Get PDF
    Purpose To analyze effects of closure of an academic proton treatment center (PTC) on pediatric case volume, distribution, and resident education. Methods and Materials This was a review of 412 consecutive pediatric (age ≤18 years) cases treated at a single institution from 2012 to 2016. Residents' Accreditation Council for Graduate Medical Education case logs for the same years were also analyzed. Characteristics of the patient population and resident case volumes before and after closure of the PTC are reported. Results Overall pediatric new starts declined by approximately 50%, from 35 to 70 per 6 months in 2012 to 2014 to 22 to 30 per 6 months in 2015 to 2016. Central nervous system (CNS) case volume declined sharply, from 121 patients treated in 2012 to 2015 to 18 patients in 2015 to 2016. In 2012 to 2014 our institution treated 36, 24, and 17 patients for medulloblastoma/intracranial primitive neuroectodermal tumor, ependymoma, and low-grade glioma, respectively, compared with 0, 1, and 1 patient(s) in 2015 to 2016. Forty-nine patients were treated with craniospinal radiation (CSI) from 2012 to 2014, whereas only 2 patients underwent CSI between 2015 and 2016. Hematologic malignancy patient volume and use of total body irradiation remained relatively stable. Patients treated when the PTC was open were significantly younger (9.1 vs 10.7 years, P=.010) and their radiation courses were longer (35.4 vs 20.9 days, P<.0001) than those treated after its closure. Resident case logs showed only a small decline in total pediatric cases, because the percentage of pediatric cases covered by residents increased after PTC closure; however, residents logged fewer CNS cases after PTC closure versus before. Conclusions Overall pediatric case volume decreased after PTC closure, as did the number of patients treated for potentially curable CNS tumors. Our findings raise important questions regarding resident training in pediatric radiation oncology as these cases become increasingly concentrated at specialized centers

    Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Rev. 3, 041303 (2016) and may be found at https://doi.org/10.1063/1.4963919.The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade

    Vimentin Levels and Serine 71 Phosphorylation in the Control of Cell-Matrix Adhesions, Migration Speed, and Shape of Transformed Human Fibroblasts

    Get PDF
    Metastasizing tumor cells show increased expression of the intermediate filament (IF) protein vimentin, which has been used to diagnose invasive tumors for decades. Recent observations indicate that vimentin is not only a passive marker for carcinoma, but may also induce tumor cell invasion. To clarify how vimentin IFs control cell adhesions and migration, we analyzed the nanoscale (30–50 nm) spatial organization of vimentin IFs and cell-matrix adhesions in metastatic fibroblast cells, using three-color stimulated emission depletion (STED) microscopy. We also studied whether wild-type and phospho-deficient or -mimicking mutants of vimentin changed the size and lifetime of focal adhesions (FAs), cell shape, and cell migration, using live-cell total internal reflection imaging and confocal microscopy. We observed that vimentin exists in fragments of different lengths. Short fragments were mostly the size of a unit-length filament and were mainly localized close to small cell-matrix adhesions. Long vimentin filaments were found in the proximity of large FAs. Vimentin expression in these cells caused a reduction in FAs size and an elongated cell shape, but did not affect FA lifetime, or the speed or directionality of cell migration. Expression of a phospho-mimicking mutant (S71D) of vimentin increased the speed of cell migration. Taken together, our results suggest that in highly migratory, transformed mesenchymal cells, vimentin levels control the cell shape and FA size, but not cell migration, which instead is linked to the phosphorylation status of S71 vimentin. These observations are consistent with the possibility that not only levels, but also the assembly status of vimentin control cell migration

    A Peer-reviewed Newspaper About_ Excessive Research

    Get PDF
    Research on machines, research with machines, and research as a machine. Publication resulting from research workshop at Exhibition Research Lab, Liverpool John Moores University, organised in collaboration with Liverpool John Moores University and Liverpool Biennial, and transmediale festival for art and digital culture, Berlin

    Predictors of Nodal and Metastatic Failure in Early Stage Non-Small Cell Lung Cancer after Stereotactic Body Radiation Therapy

    Get PDF
    Introduction/Background Many early-stage non-small cell lung cancer (ES-NSCLC) patients undergoing stereotactic body radiation therapy (SBRT) develop metastases, which is associated with poor outcomes. We sought to identify factors predictive of metastases after lung SBRT and created a risk stratification tool. Materials and Methods We included 363 patients with ES-NSCLC who received SBRT; median follow-up was 5.8 years. The following patient and tumor factors were retrospectively analyzed for their association with metastases (defined as nodal and/or distant failure): sex; age; lobe involved; centrality; previous NSCLC; smoking status; gross tumor volume (GTV); T-stage; histology; dose; minimum, maximum, and mean GTV dose; and parenchymal lung failure. A metastasis risk-score linear-model using beta coefficients from a multivariate Cox model was built. Results A total of 111/406 (27.3%) lesions metastasized. GTV volume and dose were significantly associated with metastases on univariate and multivariate Cox proportional hazards modeling (p<0.001 and HR=1.02 per mL, p<0.05 and HR=0.99 per Gy, respectively). Histology, T-stage, centrality, lung parenchymal failures, and previous NSCLC were not associated with development of metastasis. A metastasis risk-score model using GTV volume and prescription dose was built: [risk score=(0.01611 x GTV)–(0.00525 x dose (BED10))]. Two risk-score cutoffs separating the cohort into low-, medium-, and high-risk subgroups were examined. The risk-score identified significant differences in time to metastases between low-, medium-, and high-risk patients (p<0.001), with 3-year estimates of 81.1%, 63.8%, and 38%, respectively. Conclusion GTV volume and radiation dose are associated with time to metastasis and may be used to identify patients at higher risk of metastasis after lung SBRT

    Stable isotope-assisted untargeted metabolomics identifies ALDH1A1-driven erythronate accumulation in lung cancer cells

    Get PDF
    Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer

    Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic

    Get PDF
    Historical accounts of the mortality outcomes of the Black Death plague pandemic are variable across Europe, with much higher death tolls suggested in some areas than others. Here the authors use a 'big data palaeoecology' approach to show that land use change following the pandemic was spatially variable across Europe, confirming heterogeneous responses with empirical data.The Black Death (1347-1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe's population. However, despite advances in ancient DNA research that conclusively identified the pandemic's causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, 'big data palaeoecology', which, starting from palynological data, evaluates the scale of the Black Death's mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death's mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics
    • …
    corecore