4,130 research outputs found

    Influence of Disorder Strength on Phase Field Models of Interfacial Growth

    Get PDF
    We study the influence of disorder strength on the interface roughening process in a phase-field model with locally conserved dynamics. We consider two cases where the mobility coefficient multiplying the locally conserved current is either constant throughout the system (the two-sided model) or becomes zero in the phase into which the interface advances (one-sided model). In the limit of weak disorder, both models are completely equivalent and can reproduce the physical process of a fluid diffusively invading a porous media, where super-rough scaling of the interface fluctuations occurs. On the other hand, increasing disorder causes the scaling properties to change to intrinsic anomalous scaling. In the limit of strong disorder this behavior prevails for the one-sided model, whereas for the two-sided case, nucleation of domains in front of the invading front are observed.Comment: Accepted for publication in PR

    Interface Equations for Capillary Rise in Random Environment

    Get PDF
    We consider the influence of quenched noise upon interface dynamics in 2D and 3D capillary rise with rough walls by using phase-field approach, where the local conservation of mass in the bulk is explicitly included. In the 2D case the disorder is assumed to be in the effective mobility coefficient, while in the 3D case we explicitly consider the influence of locally fluctuating geometry along a solid wall using a generalized curvilinear coordinate transformation. To obtain the equations of motion for meniscus and contact lines, we develop a systematic projection formalism which allows inclusion of disorder. Using this formalism, we derive linearized equations of motion for the meniscus and contact line variables, which become local in the Fourier space representation. These dispersion relations contain effective noise that is linearly proportional to the velocity. The deterministic parts of our dispersion relations agree with results obtained from other similar studies in the proper limits. However, the forms of the noise terms derived here are quantitatively different from the other studies

    Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979-2018 based on ERA5

    Get PDF
    This study presents the monthly 10‐m wind speed climatology, decadal variability and possible trends in the North Atlantic and Europe from ERA5 reanalysis from 1979 to 2018 and investigates the physical reasons for the decadal variability. Additionally, temporal time series are examined in three locations: the central North Atlantic, Finland and Iberian Peninsula. The 40‐year mean and the 98th percentile wind speeds emphasize a distinct land‐sea contrast and a seasonal variation with the strongest winds over the ocean and during winter. The strongest winds and the highest variability are associated with the storm tracks and local wind phenomena such as the mistral. The extremeness of the winds is examined with an extreme wind factor (the 98th percentile divided by mean wind speeds) which in all months is higher in southern Europe than in northern Europe. Mostly no linear trends in 10‐m wind speeds are identified in the three locations but large annual and decadal variability is evident. The decadal 10‐m wind speeds were stronger than average in the 1990s in northern Europe and in the 1980s and 2010s in southern Europe. These decadal changes were largely explained by the positioning of the jet stream and storm tracks and the strength of the north–south pressure gradient in the North Atlantic. The 10‐m winds have a positive correlation with the North Atlantic Oscillation in the central North Atlantic and Finland on annual scales and during cold season months and a negative correlation in Iberian Peninsula mostly from July to March. The Atlantic Multi‐decadal Oscillation has a moderate negative correlation with the winds in the central North Atlantic but no correlation in Finland and Iberian Peninsula. Overall, our results emphasize that while linear trends in wind speeds may show a general long‐term trend, more information on the changes is obtained by analysing long‐term variability.This study presents the monthly 10-m wind speed climatology, decadal variability and possible trends in the North Atlantic and Europe from ERA5 reanalysis from 1979 to 2018 and investigates the physical reasons for the decadal variability. Additionally, temporal time series are examined in three locations: the central North Atlantic, Finland and Iberian Peninsula. The 40-year mean and the 98th percentile wind speeds emphasize a distinct land-sea contrast and a seasonal variation with the strongest winds over the ocean and during winter. The strongest winds and the highest variability are associated with the storm tracks and local wind phenomena such as the mistral. The extremeness of the winds is examined with an extreme wind factor (the 98th percentile divided by mean wind speeds) which in all months is higher in southern Europe than in northern Europe. Mostly no linear trends in 10-m wind speeds are identified in the three locations but large annual and decadal variability is evident. The decadal 10-m wind speeds were stronger than average in the 1990s in northern Europe and in the 1980s and 2010s in southern Europe. These decadal changes were largely explained by the positioning of the jet stream and storm tracks and the strength of the north-south pressure gradient in the North Atlantic. The 10-m winds have a positive correlation with the North Atlantic Oscillation in the central North Atlantic and Finland on annual scales and during cold season months and a negative correlation in Iberian Peninsula mostly from July to March. The Atlantic Multi-decadal Oscillation has a moderate negative correlation with the winds in the central North Atlantic but no correlation in Finland and Iberian Peninsula. Overall, our results emphasize that while linear trends in wind speeds may show a general long-term trend, more information on the changes is obtained by analysing long-term variability.Peer reviewe

    A study of the degree to which satellite- derived gravitational data can be related to the anomalous surface gravity field and other anomalous geophysical parameters Final report

    Get PDF
    Satellite-derived gravitational data related to anomalous surface gravity field and other geophysical parameters of Solomon Islands are

    Thermohydrodynamics of boiling in a van der Waals fluid

    Get PDF
    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.Peer reviewe

    Growth Mechanism and Origin of High sp^{3} Content in Tetrahedral Amorphous Carbon.

    Get PDF
    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high sp^{3} fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high sp^{3} content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high sp^{3} fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.This research was financially supported by the Academy of Finland through Grants No. 310574 and No. 285526. Computational resources were provided by CSC—IT Center for Science, Finland, though Projects No. 2000634 and No. 2000300. V. L. D. gratefully acknowledges a fellowship from the Alexander von Humboldt Foundation, a Leverhulme Early Career Fellowship, and support from the Isaac Newton Trust

    Interpreting eddy covariance data from heterogeneous Siberian tundra : land-cover-specific methane fluxes and spatial representativeness

    Get PDF
    The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements in Tiksi, a tundra site in northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very-high-spatial-resolution satellite imagery and field surveys, and quantified the sensor location bias. We found that methane (CH4) fluxes varied strongly with wind direction (-0.09 to 0.59 mu gCH(4)m(-2) s(-1) on average) during summer 2014, reflecting the distribution of different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH4 flux, we developed a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra patches in locations with topography-enhanced wetness acted as strong sources (1.0 mu gCH(4) m(-2) s(-1) during the peak emission period), while mineral soils were significant sinks (-0.13 mu gCH(4) m(-2) s(-1)). To assess the representativeness of measurements, we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close to the CH4 balance upscaled to an area of 6.3 km(2), with a location bias of 14 %. We recommend that EC site descriptions in a heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other site characteristics.Peer reviewe

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    Accurate computational prediction of core-electron binding energies in carbon-based materials: A machine-learning model combining density-functional theory and GW\boldsymbol{GW}

    Full text link
    We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core-electron binding energies, from which x-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GWGW and uses kernel ridge regression for the ML predictions. We apply the new approach to materials and molecules containing carbon, hydrogen and oxygen, and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server
    corecore