34 research outputs found
Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts
Background Although timeâdomain measures of heart rate variability (HRV) are used to estimate cardiac autonomic tone and disease risk in multiethnic populations, the genetic epidemiology of HRV in Hispanics/Latinos has not been characterized. Objective The purpose of this study was to conduct a genome-wide association study of heart rate (HR) and its variability in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Women's Health Initiative Hispanic SNP-Health Association Resource project (n = 13,767). Methods We estimated HR (bpm), standard deviation of normal-to-normal interbeat intervals (SDNN, ms), and root mean squared difference in successive, normal-to-normal interbeat intervals (RMSSD, ms) from resting, standard 12-lead ECGs. We estimated associations between each phenotype and 17 million genotyped or imputed single nucleotide polymorphisms (SNPs), accounting for relatedness and adjusting for age, sex, study site, and ancestry. Cohort-specific estimates were combined using fixed-effects, inverse-variance meta-analysis. We investigated replication for select SNPs exceeding genome-wide (P <5 Ă 10â8) or suggestive (P <10â6) significance thresholds. Results Two genome-wide significant SNPs replicated in a European ancestry cohort, 1 one for RMSSD (rs4963772; chromosome 12) and another for SDNN (rs12982903; chromosome 19). A suggestive SNP for HR (rs236352; chromosome 6) replicated in an African-American cohort. Functional annotation of replicated SNPs in cardiac and neuronal tissues identified potentially causal variants and mechanisms. Conclusion This first genome-wide association study of HRV and HR in Hispanics/Latinos underscores the potential for even modestly sized samples of non-European ancestry to inform the genetic epidemiology of complex traits
Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study
ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3
7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6
7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype
A system for phenotype harmonization in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) program
Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Instituteâs Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948â2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms
Genetic analyses of diverse populations improves discovery for complex traits
Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1â3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4â10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United Statesâwhere minority populations have a disproportionately higher burden of chronic conditions13âthe lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities. © 2019, The Author(s), under exclusive licence to Springer Nature Limited
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease
AltitudeOmics : impaired pulmonary gas exchange efficiency and blunted ventilatory acclimatization in humans with patent foramen ovale after 16 days at 5,260 m.
A patent foramen ovale (PFO), present in âŒ40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO-). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO- subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO- subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO- subjects