65 research outputs found

    Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes

    Get PDF
    International audienceSatellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc.) are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) waveform and photon counting signals

    Fermi level shift in carbon nanotubes by dye confinement

    Get PDF
    International audienceDye confinement into carbon nanotube significantly affects the electronic charge density distribution of the final hybrid system. Using the electron-phonon coupling sensitivity of the Raman G-band, we quantify experimentally how charge transfer from thiophene oligomers to single walled carbon nanotube is modulated by the diameter of the nano-container and its metallic or semiconducting character. This charge transfer is shown to restore the electron-phonon coupling into defected metallic nanotubes. For sub-nanometer diameter tube, an electron transfer optically activated is observed when the excitation energy matches the HOMO-LUMO transition of the confined oligothiophene. This electron doping accounts for an important enhancement of the photoluminescence intensity up to a factor of nearly six for optimal confinement configuration. This electron transfer shifts the Fermi level, acting on the photoluminescence efficiency. Therefore, thiophene oligomer encapsulation allows modulating the electronic structure and then the optical properties of the hybrid system

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    Estrogen receptor alpha as a key target of organochlorines to promote angiogenesis

    Get PDF
    International audienceEpidemiological studies report that exposure to pesticides like chlordecone and lindane increases risk of cancer. They may act as endocrine disruptors via the activation of estrogen receptor α (ERα). Carcinogenesis involved angiogenesis and no available data regarding these organochlorines have been reported. The present study aimed at investigating the effects of lindane and chlordecone on cellular processes leading to angiogenesis through an involvement of ERα. Angiogenesis has been analyzed both in vitro, on human endothelial cells, and in vivo by quantifying neovascularization with the use of ECMgelŸ plug in mice. Both pesticides increased endothelial cell proliferation, migration and MMP2 activity. These toxics potentiated cell adhesion by enhancing FAK phosphorylation and stress fibers. The two organochlorines increased nitric oxide production via an enhancement of eNOS activity without modification of oxidative stress. Evidence has been provided that the two toxins increased in vivo neovascularization. Most interestingly, all the above processes were either partially or completely prevented after silencing of ERα. Altogether, these data highlight that organochlorines modulate cellular angiogenic processes through activation of ERα. This study further reinforces the harmful effects of these pesticides in carcinogenesis, particularly in the modulation of angiogenesis, a critical step in tumor promotion, through ERα.</p

    High-speed imaging optical techniques for shockwave and droplets atomization analysis

    No full text
    International audienceDroplets atomization by shockwave can act as a consequence in domino effects on an industrialfacility: aggression of a storage tank (projectile from previous event, for example) can cause leakage of hazardousmaterial (toxic and flammable). As the accident goes on, a secondary event can cause blast generation,impacting the droplets and resulting in their atomization. Therefore, exchange surface increase impacts theevaporation rate. This can be an issue in case of dispersion of such a cloud. The experiments conducted inthe lab generate a shockwave with an open-ended shock tube to break up liquid droplets. As the expectedshockwave speed is about 400 m∕s (∌Mach 1.2), the interaction with falling drops is very short. High-speedimaging is performed at about 20,000 fps. The shockwave is measured using both overpressure sensors:particle image velocimetry and pure in line shadowgraphy. The size of fragmented droplets is optically measuredby direct shadowgraphy simultaneously in different directions. In these experiments, secondary breakups of adroplet into an important number of smaller droplets from the shockwave-induced flow are shown. The results ofthe optical characterizations are discussed in terms of shape, velocity, and size
    • 

    corecore