75 research outputs found
Nomogram to help explain probabilistic seismic hazard
Nomograms are an easy-to-use and visually-attractive graphical tool to solve for any of the variables within an often complex equation. In seismology the most well-known nomogram is a three-parallel-scale graphic for the calculation of local magnitude given the epicentral distance and trace amplitude. Until the advent of computers, nomograms were often employed by engineers and scientists in many fields as they provide a means for rapid and accurate calculations as well as helping the user understand the sensitivity of the final results to the input parameters. It is this aid to understanding that remains a key attraction of these graphical tools, which are now rarely seen (although they remain common in some fields of medicine where they are used for rapid screening and estimating risks). In this Research Letter we present a nomogram summarising the results of simple probabilistic seismic hazard assessments (PSHAs) for peak ground acceleration and elastic response spectral acceleration for a structural period of 1s and return periods from 100 to 2500 years, where the effects of the activity rate and the slope of the Gutenberg-Richter relation are captured. We believe that this nomogram has considerable educational benefit for engineering seismology students, decision makers and other non-expert users of results of PSHAs
Homogenizing instrumental earthquake catalogs – a case study around the Dead Sea Transform Fault Zone
The creation of a homogenized earthquake catalog is a fundamental step in seismic hazard analysis. The homogenization procedure, however, is complex and requires a good understanding of the heterogeneities among the available bulletins. Common events within the bulletins have to be identified and assigned with the most suitable origin time and location solution, while all the events have to be harmonized into a single magnitude scale. This process entails several decision variables that are usually defined using qualitative measures or expert opinion, without a clear exploration of the associated uncertainties. To address this issue, we present an automated and data-driven workflow that defines spatio-temporal margins within which duplicate events fall and converts the various reported magnitudes into a common scale. Special attention has been paid to the fitted functional form and the validity range of the derived magnitude conversion relations. The proposed methodology has been successfully applied to a wide region around the Dead Sea Transform Fault Zone (27N-36N, 31E-39E), with input data from various sources such as the International Seismological Centre and the Geophysical Institute of Israel. The produced public catalog contains more than 5500 events, between 1900 and 2017, with moment magnitude Mw above 3. The MATLAB/Python scripts used in this study are also available
Methods for evaluating the significance and importance of differences amongst probabilistic seismic hazard results for engineering and risk analyses : a review and insights
When new seismic hazard estimates are published it is natural to compare them to existing results for the same location. This type of comparison routinely indicates differences amongst hazard estimates obtained with the various models. The question that then arises is whether these differences are scientifically significant, given the large epistemic uncertainties inherent in all seismic hazard estimates, or practically important, given the use of hazard models as inputs to risk and engineering calculations. A difference that exceeds a given threshold could mean that building codes may need updating, risk models for insurance purposes may need to be revised, or emergency management procedures revisited. In the current literature there is little guidance on what constitutes a significant or important difference, which can lead to lengthy discussions amongst hazard modellers, end users and stakeholders. This study reviews proposals in the literature on this topic and examines how applicable these proposals are, using, for illustration purposes, several sites and various seismic hazard models for each site, including the two European Seismic Hazard Models of 2013 and 2020. The implications of differences in hazard for risk and engineering purposes are also examined to understand how important such differences are for potential end users of seismic hazard models. Based on this, we discuss the relevance of such methods to determine the scientific significance and practical importance of differences between seismic hazard estimates and identify some open questions. We conclude that there is no universal criterion for assessing differences between seismic hazard results and that the recommended approach depends on the context. Finally, we highlight where additional work is required on this topic and that we encourage further discussion of this topic
The 2013 European seismic hazard model : key components and results
The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk (www.efehr.org)
Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland
The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep-hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is often associated with fluid-induced seismicity, most of which is not felt on the surface but which, in rare cases, can be a nuisance to the population and even damage the nearby building stock. This study presents a first-of-its-kind pre-drilling probabilistic induced seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk. The results of the risk assessment indicate that the individual risk within a radius of 2 km around the injection point is below 0.1 micromorts, and damage risk is below 10−2, for the total duration of the project. However, these results are affected by several orders of magnitude of variability due to the deep uncertainties present at all levels of the analysis, indicating a critical need in updating this risk assessment with in situ data collected during the stimulation. Therefore, it is important to stress that this a priori study represents a baseline model and starting point to be updated and refined after the start of the project
Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS.info:eu-repo/semantics/publishedVersio
Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe
The Seismic Hazard Harmonization in Europe (SHARE) project, which began in June 2009, aims at establishing new standards for probabilistic seismic hazard assessment in the Euro-Mediterranean region. In this context, a logic tree for ground-motion prediction in Europe has been constructed. Ground-motion prediction equations (GMPEs) and weights have been determined so that the logic tree captures epistemic uncertainty in ground-motion prediction for six different tectonic regimes in Europe. Here we present the strategy that we adopted to build such a logic tree. This strategy has the particularity of combining two complementary and independent approaches: expert judgment and data testing. A set of six experts was asked to weight pre-selected GMPEs while the ability of these GMPEs to predict available data was evaluated with the method of Scherbaum et al. (Bull Seismol Soc Am 99:3234-3247, 2009). Results of both approaches were taken into account to commonly select the smallest set of GMPEs to capture the uncertainty in ground-motion prediction in Europe. For stable continental regions, two models, both from eastern North America, have been selected for shields, and three GMPEs from active shallow crustal regions have been added for continental crust. For subduction zones, four models, all non-European, have been chosen. Finally, for active shallow crustal regions, we selected four models, each of them from a different host region but only two of them were kept for long periods. In most cases, a common agreement has been also reached for the weights. In case of divergence, a sensitivity analysis of the weights on the seismic hazard has been conducted, showing that once the GMPEs have been selected, the associated set of weights has a smaller influence on the hazar
Towards a uniform earthquake risk model for Europe
Seismic risk has been the focus of a number of European projects in recent years, but there has never been a
concerted effort amongst the research community to produce a uniform European risk model. The H2020 SERA
project has a work package that is dedicated to that objective, with the aim being to produce an exposure model,
a set of fragility/vulnerability functions, and socio-economic indicators in order to assess probabilistic seismic
risk at a European scale. The partners of the project are working together with the wider seismic risk community
through web tools, questionnaires, workshops, and meetings. All of the products of the project will be openly
shared with the community on both the OpenQuake platform of the Global Earthquake Model (GEM) and the
web platform of the European Facilities for Earthquake Hazard and Risk (EFEHR)
The 2013 European Seismic Hazard Model: key components and results
The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk (www.efehr.org)
- …