969 research outputs found

    Electrical conductance of a 2D packing of metallic beads under thermal perturbation

    Get PDF
    Electrical conductivity measurements on a 2D packing of metallic beads have been performed to study internal rearrangements in weakly pertubed granular materials. Small thermal perturbations lead to large non gaussian conductance fluctuations. These fluctuations are found to be intermittent and gathered in bursts. The distributions of the waiting time between to peaks is found to be a power law inside bursts. The exponent is independent of the bead network, the intensity of the perturbation and external stress. these bursts are interpreted as the signature of individual bead creep rather than collective vaults reorganisations. We propose a simple model linking the exponent of the waiting time distribution to the roughness exponent of the surface of the beads.Comment: 7 pages, 6 figure

    Vibrational spectroscopy of H2+: precise evaluation of the Zeeman effect

    Full text link
    We present an accurate computation of the g-factors of the hyperfine states of the hydrogen molecular ion H2+. The results are in good agreement with previous experiments, and can be tested further by rf spectroscopy. Their implication for high-precision two-photon vibrational spectroscopy of H2+ is also discussed. It is found that the most intense hyperfine components of two-photon lines benefit from a very small Zeeman splitting

    Experimental study of granular surface flows via a fast camera: a continuous description

    Get PDF
    Depth averaged conservation equations are written for granular surface flows. Their application to the study of steady surface flows in a rotating drum allows to find experimentally the constitutive relations needed to close these equations from measurements of the velocity profile in the flowing layer at the center of the drum and from the flowing layer thickness and the static/flowing boundary profiles. The velocity varies linearly with depth, with a gradient independent of both the flowing layer thickness and the static/flowing boundary local slope. The first two closure relations relating the flow rate and the momentum flux to the flowing layer thickness and the slope are then deduced. Measurements of the profile of the flowing layer thickness and the static/flowing boundary in the whole drum explicitly give the last relation concerning the force acting on the flowing layer. Finally, these closure relations are compared to existing continuous models of surface flows.Comment: 20 pages, 11 figures, submitted to Phys. FLuid

    Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    Full text link
    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.Comment: Proceedings of EUCAS 09 conferenc

    GRB030406 an extremely hard burst outside of the INTEGRAL field of view

    Get PDF
    Using the IBIS Compton mode, the INTEGRAL satellite is able to detect and localize bright and hard GRBs, which happen outside of the nominal INTEGRAL telescopes field of view. We have developed a method of analyzing such INTEGRAL data to obtain the burst location and spectra. We present the results for the case of GRB030406. The burst is localized with the Compton events, and the location is consistent with the previous Interplanetary Network position. A spectral analysis is possible with the detailed modeling of the detector response for such a far off-axis source with the offset of 36.9 ^\circ. The average spectrum of the burst is extremely hard: the photon index above 400 \kev is -1.7, with no evidence of a break up to 1.1 \mev at 90% confidence level.Comment: Astronomy and Astrophysics in pres

    Interference-filter-stabilized external-cavity diode lasers

    Get PDF
    We have developed external-cavity diode lasers, where the wavelength selection is assured by a low loss interference filter instead of the common diffraction grating. The filter allows a linear cavity design reducing the sensitivity of the wavelength and the external cavity feedback against misalignment. By separating the feedback and wavelength selection functions, both can be optimized independently leading to an increased tunability of the laser. The design is employed for the generation of laser light at 698, 780 and 852 nm. Its characteristics make it a well suited candidate for space-born lasers.Comment: 12 pages, 5 figure

    Improved tests of Local Position Invariance using 87Rb and 133Cs fountains

    Full text link
    We report tests of local position invariance based on measurements of the ratio of the ground state hyperfine frequencies of 133Cs and 87Rb in laser-cooled atomic fountain clocks. Measurements extending over 14 years set a stringent limit to a possible variation with time of this ratio: d ln(nu_Rb/nu_Cs)/dt=(-1.39 +/- 0.91)x 10-16 yr-1. This improves by a factor of 7.7 over our previous report (H. Marion et al., Phys. Rev. Lett. 90, 150801 (2003)). Our measurements also set the first limit to a fractional variation of the Rb/Cs ratio with gravitational potential at the level of c^2 d ln(nu_Rb/nu_Cs)/dU=(0.11 +/- 1.04)x 10^-6, providing a new stringent differential redshift test. The above limits equivalently apply to the fractional variation of the quantity alpha^{-0.49}x(g_Rb/g_Cs), which involves the fine structure constant alpha and the ratio of the nuclear g-factors of the two alkalis. The link with variations of the light quark mass is also presented together with a global analysis combining with other available highly accurate clock comparisons.Comment: 5 pages, 3 figures, 3 tables, 34 reference

    Detection and period measurements of GX1+4 at hard x ray energies with the SIGMA telescope

    Get PDF
    The galactic Low Mass X ray Binary GX1+4 was detected by the coded aperture hard X ray gamma ray SIGMA telescope during the Feb. to April 1991 observations of the galactic center regions. The source, whose emission varied during the survey of a factor greater than 40 pct., reached a maximum luminosity in the 40 to 140 energy range of 1.03 x 10(exp 37) erg/s (D = 8.5 kpc), thus approaching the emission level of the 1970 to 1980 high state. Two minute flux pulsations were detected on Mar. 22 and on Mar. 31 and Apr. 1. Comparison with the last period measurements shows that the current spin-down phase of GX1+4 is ending. Concerning the proposed association of this source with the galactic center 511 keV annihilation emission, upper limits were derived
    corecore