3,344 research outputs found

    Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round

    Get PDF
    ChaCha is a family of stream ciphers that are very efficient on constrainted platforms. In this paper, we present electromagnetic side-channel analyses for two different software implementations of ChaCha20 on a 32-bit architecture: one compiled and another one directly written in assembly. On the device under test, practical experiments show that they have different levels of resistance to side-channel attacks. For the most leakage-resilient implementation, an analysis of the whole quarter round is required. To overcome this complication, we introduce an optimized attack based on a divide-and-conquer strategy named bricklayer attack

    Masking the Lightweight Authenticated Ciphers ACORN and Ascon in Software

    Get PDF
    The ongoing CAESAR competition aims at finding authenticated encryption schemes that offer advantages over AES-GCM for several use-cases, including lightweight applications. ACORN and Ascon are the two finalists for this profile. Our paper compares these two candidates according to their resilience against differential power analysis and their ability to integrate countermeasures against such attacks. Especially, we focus on software implementations and provide benchmarks for several security levels on an ARM Cortex-M3 embedded microprocessor

    Fatigue design load calculations of the offshore NREL 5MW benchmark turbine using quadrature rule techniques

    Get PDF
    A novel approach is proposed to reduce, compared to the conventional binning approach, the large number of aeroelastic code evaluations that are necessary to obtain equivalent loads acting on wind turbines. These loads describe the effect of long-term environmental variability on the fatigue loads of a horizontal-axis wind turbine. In particular Design Load Case 1.2, as standardized by IEC, is considered. The approach is based on numerical integration techniques and, more specifically, quadrature rules. The quadrature rule used in this work is a recently proposed "implicit" quadrature rule, which has the main advantage that it can be constructed directly using measurements of the environment. It is demonstrated that the proposed approach yields accurate estimations of the equivalent loads using a significantly reduced number of aeroelastic model evaluations (compared to binning). Moreover the error introduced by the seeds (introduced by averaging over random wind fields and sea states) is incorporated in the quadrature framework, yielding an even further reduction in the number of aeroelastic code evaluations. The reduction in computational time is demonstrated by assessing the fatigue loads on the NREL 5MW reference offshore wind turbine in conjunction with measurement data obtained at the North Sea, both for a simplified and a full load case

    High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study

    Get PDF
    International audienceThe high-pressure behavior of polyiodides confined into the hollow core of single-walled carbon nanotubes organized into bundles has been studied by means of Raman spectroscopy. Several regimes of the structural properties are observed for the nanotubes and the polyiodides under pressure. Raman responses of both compounds exhibit correlations over the whole pressure range (0–17 GPa). Modifications, in particular, take place, respectively, between 1 and 2.3 GPa for polyiodides and between 7 and 9 GPa for nanotubes, depending on the experiment. Differences between one experiment to another are discussed in terms of nanotube filling homogeneity. These transitions can be presumably assigned to the tube ovalization pressure and to the tube collapse pressure. A nonreversibility of several polyiodide mode modifications is evidenced and interpreted in terms of a progressive linearization of the iodine polyanions and a reduction in the charged species on pressure release. Furthermore, the significant change in the mode intensities could be associated to an enhancement of lattice modes, suggesting the formation of a new structure inside the nanotube. Changes in the nanotube mode positions after pressure release point out a decrease in the charge transfer in the hybrid system consistent with the observed evolution of the charged species

    High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study

    Get PDF
    International audienceThe high-pressure behavior of polyiodides confined into the hollow core of single-walled carbon nanotubes organized into bundles has been studied by means of Raman spectroscopy. Several regimes of the structural properties are observed for the nanotubes and the polyiodides under pressure. Raman responses of both compounds exhibit correlations over the whole pressure range (0–17 GPa). Modifications, in particular, take place, respectively, between 1 and 2.3 GPa for polyiodides and between 7 and 9 GPa for nanotubes, depending on the experiment. Differences between one experiment to another are discussed in terms of nanotube filling homogeneity. These transitions can be presumably assigned to the tube ovalization pressure and to the tube collapse pressure. A nonreversibility of several polyiodide mode modifications is evidenced and interpreted in terms of a progressive linearization of the iodine polyanions and a reduction in the charged species on pressure release. Furthermore, the significant change in the mode intensities could be associated to an enhancement of lattice modes, suggesting the formation of a new structure inside the nanotube. Changes in the nanotube mode positions after pressure release point out a decrease in the charge transfer in the hybrid system consistent with the observed evolution of the charged species

    The Impact of Experimental Pain on Shoulder Movement During an Arm Elevated Reaching Task in a Virtual Reality Environment

    Get PDF
    Background: People with chronic shoulder pain have been shown to present with motor adaptations during arm movements. These adaptations may create abnormal physical stress on shoulder tendons and muscles. However, how and why these adaptations develop from the acute stage of pain is still not well-understood. Objective: To investigate motor adaptations following acute experimental shoulder pain during upper limb reaching. Methods: Forty participants were assigned to the Control or Pain group. They completed a task consisting of reaching targets in a virtual reality environment at three time points: (1) baseline (both groups pain-free), (2) experimental phase (Pain group experiencing acute shoulder pain induced by injecting hypertonic saline into subacromial space), and (3) Post experimental phase (both groups pain-free). Electromyographic (EMG) activity, kinematics, and performance data were collected. Results: The Pain group showed altered movement planning and execution as shown by a significant increased delay to reach muscles EMG peak and a loss of accuracy, compared to controls that have decreased their mean delay to reach muscles peak and improved their movement speed through the phases. The Pain group also showed protective kinematic adaptations using less shoulder elevation and elbow flexion, which persisted when they no longer felt the experimental pain. Conclusion: Acute experimental pain altered movement planning and execution, which affected task performance. Kinematic data also suggest that such adaptations may persist over time, which could explain those observed in chronic pain populations

    Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project.

    Get PDF
    communication oraleInternational audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Optimization of Ex Vivo Machine Perfusion and Transplantation of Vascularized Composite Allografts

    Get PDF
    Background: Machine perfusion is gaining interest as an efficient method of tissue preservation of Vascularized Composite Allografts (VCA). The aim of this study was to develop a protocol for ex vivo subnormothermic oxygenated machine perfusion (SNMP) on rodent hindlimbs and to validate our protocol in a heterotopic hindlimb transplant model. Methods: In this optimization study we compared three different solutions during 6 h of SNMP ( n = 4 per group). Ten control limbs were stored in a preservation solution on Static Cold Storage [SCS]). During SNMP we monitored arterial flowrate, lactate levels, and edema. After SNMP, muscle biopsies were taken for histology examination, and energy charge analysis. We validated the best perfusion protocol in a heterotopic limb transplantation model with 30-d follow up ( n = 13). As controls, we transplanted untreated limbs ( n = 5) and hindlimbs preserved with either 6 or 24 h of SCS ( n = 4 and n = 5). Results: During SNMP, arterial outflow increased, and lactate clearance decreased in all groups. Total edema was significantly lower in the HBOC-201 group compared to the BSA group ( P = 0.005), 4.9 (4.3-6.1) versus 48.8 (39.1-53.2) percentage, but not to the BSA + PEG group ( P = 0.19). Energy charge levels of SCS controls decreased 4-fold compared to limbs perfused with acellular oxygen carrier HBOC-201, 0.10 (0.07-0.17) versus 0.46 (0.42-0.49) respectively ( P = 0.002). Conclusions: Six hours ex vivo SNMP of rodent hindlimbs using an acellular oxygen carrier HBOC-201 results in superior tissue preservation compared to conventional SCS. (c) 2021 Elsevier Inc. All rights reserved

    Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications

    No full text
    International audienceWe investigate wavelength tunable 56-Gb/s differential quaternary phase-shift keying (DQPSK) systems using comb generation in a quantum-dash mode-locked laser for wavelength-division-multiple access (WDM)-based broadcast application. We present relative intensity noise and bit-error-rate measurements for each mode. We demonstrate error-free operation over nine WDM channels with 100-GHz spacing
    • …
    corecore