26 research outputs found

    Metabolic role of the hepatic valine/3-hydroxyisobutyrate (3-HIB) pathway in fatty liver disease

    Get PDF
    Background: The valine (branched-chain amino acid) metabolite 3-hydroxyisobutyrate (3-HIB), produced by 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), is associated with insulin resistance and type 2 diabetes, but implicated tissues and cellular mechanisms are poorly understood. We hypothesized that HIBCH and 3-HIB regulate hepatic lipid accumulation. Methods: HIBCH mRNA in human liver biopsies (“Liver cohort”) and plasma 3-HIB (“CARBFUNC” cohort) were correlated with fatty liver and metabolic markers. Human Huh7 hepatocytes were supplemented with fatty acids (FAs) to induce lipid accumulation. Following HIBCH overexpression, siRNA knockdown, inhibition of PDK4 (a marker of FA ÎČ-oxidation) or 3-HIB supplementation, we performed RNA-seq, Western blotting, targeted metabolite analyses and functional assays. Findings: We identify a regulatory feedback loop between the valine/3-HIB pathway and PDK4 that shapes hepatic FA metabolism and metabolic health and responds to 3-HIB treatment of hepatocytes. HIBCH overexpression increased 3-HIB release and FA uptake, while knockdown increased cellular respiration and decreased reactive oxygen species (ROS) associated with metabolic shifts via PDK4 upregulation. Treatment with PDK4 inhibitor lowered 3-HIB release and increased FA uptake, while increasing HIBCH mRNA. Implicating this regulatory loop in fatty liver, human cohorts show positive correlations of liver fat with hepatic HIBCH and PDK4 expression (Liver cohort) and plasma 3-HIB (CARBFUNC cohort). Hepatocyte 3-HIB supplementation lowered HIBCH expression and FA uptake and increased cellular respiration and ROS. Interpretation: These data implicate the hepatic valine/3-HIB pathway in mechanisms of fatty liver, reflected in increased plasma 3-HIB concentrations, and present possible targets for therapeutic intervention.publishedVersio

    Meal patterns associated with energy intake in people with obesity

    Get PDF
    It is widely assumed that people with obesity have several common eating patterns, including breakfast-skipping (1), eating during the night (2) and high fast-food consumption (3). However, differences in individual meal and dietary patterns may be crucial to optimizing obesity treatment. Therefore, we investigated the inter-individual variation in eating patterns, hypothesizing that individuals with obesity show different dietary and meal patterns, and that these associate with self-reported energy intake (rEI) and/or anthropometric measures. Cross-sectional data from 192 participants (aged 20–55 years) with obesity, including 6 days of weighed food records, were analyzed. Meal patterns and dietary patterns were derived using exploratory hierarchical cluster analysis and k-means cluster analysis, respectively. Five clear meal patterns were found based on the time-of-day with the highest mean rEI. The daily rEI (mean ± SD kcal) was highest among “midnight-eaters” (2550 ± 550), and significantly (p < 0.05) higher than “dinner-eaters” (2060 ± 550), “lunch-eaters” (2080 ± 520), and “supper-eaters” (2100 ± 460), but not “regular-eaters” (2330 ± 650). Despite differences of up to 490 kcal between meal patterns, there were no significant differences in anthropometric measures or physical activity level (PAL). Four dietary patterns were also found with significant differences in intake of specific food groups, but without significant differences in anthropometry, PAL, or rEI. Our data highlight meal timing as a determinant of individual energy intake in people with obesity. The study supports the importance of considering a person’s specific meal pattern, with possible implications for more person-focused guidelines and targeted advice.publishedVersio

    Relationship between Ketones, Ghrelin, and, Appetite on Isocaloric Diets with Varying Carbohydrate Quality and Amount: Results from a Randomized Controlled Trial in People with Obesity (CARBFUNC)

    Get PDF
    Background - Low-carbohydrate high-fat (LCHF) diets may suppress the increase in appetite otherwise seen after diet-induced fat loss. However, studies of diets without severe energy restriction are lacking, and the effects of carbohydrate quality relative to quantity have not been directly compared. Objectives - To evaluated short- (3 mo) and long-term (12 mo) changes in fasting plasma concentrations of total ghrelin, ÎČ-hydroxybutyrate (ÎČHB), and subjective feelings of appetite on 3 isocaloric eating patterns within a moderate caloric range (2000–2500 kcal/d) and with varying carbohydrate quality or quantity. Methods - We performed a randomized controlled trial of 193 adults with obesity, comparing eating patterns based on “acellular” carbohydrate sources (e.g., flour-based whole-grain products; comparator arm), “cellular” carbohydrate sources (minimally processed foods with intact cellular structures), or LCHF principles. Outcomes were compared by an intention-to-treat analysis using constrained linear mixed modeling. This trial was registered at clinicaltrials.gov as NCT03401970. Results - Of the 193 adults, 118 (61%) and 57 (30%) completed 3 and 12 mo of follow-up. Throughout the intervention, intakes of protein and energy were similar with all 3 eating patterns, with comparable reductions in body weight (5%−7%) and visceral fat volume (12%−17%) after 12 mo. After 3 mo, ghrelin increased significantly with the acellular (mean: 46 pg/mL; 95% CI: 11, 81) and cellular (mean: 54 pg/mL; 95% CI: 21, 88) diets but not with the LCHF diet (mean: 11 pg/mL; 95% CI: −16, 38). Although ÎČHB increased significantly more with the LCHF diet than with the acellular diet after 3 m (mean: 0.16 mmol/L; 95% CI: 0.09, 0.24), this did not correspond to a significant group difference in ghrelin (unless the 2 high-carbohydrate groups were combined [mean: −39.6 pg/mL; 95% CI: −76, −3.3]). No significant between-group differences were seen in feelings of hunger. Conclusions - Modestly energy-restricted isocaloric diets differing in carbohydrate cellularity and amount showed no significant differences in fasting total ghrelin or subjective hunger feelings. An increase in ketones with the LCHF diet to 0.3–0.4 mmol/L was insufficient to substantially curb increases in fasting ghrelin during fat loss

    Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    Get PDF
    International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit

    Akt targeting as a strategy to boost chemotherapy efficacy in non-small cell lung cancer through metabolism suppression.

    No full text
    International audienceMetabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors

    Pediatric mastocytosis–associated KIT extracellular domain mutations exhibit different functional and signaling properties compared with KIT-phosphotransferase domain mutations

    No full text
    International audienceAbstract Compared with adults, pediatric mastocytosis has a relatively favorable prognosis. Interestingly, a difference was also observed in the status of c-kit mutations according to the age of onset. Although most adult patients have a D816V mutation in phosphotransferase domain (PTD), we have described that half of the children carry mutations in extracellular domain (ECD). KIT-ECD versus KIT-PTD mutants were introduced into rodent Ba/F3, EML, Rat2, and human TF1 cells to investigate their biologic effect. Both ECD and PTD mutations induced constitutive receptor autophosphorylation and ligand-independent proliferation of the 3 hematopoietic cells. Unlike ECD mutants, PTD mutants enhanced cluster formation and up-regulated several mast cell-related antigens in Ba/F3 cells. PTD mutants failed to support colony formation and erythropoietin-mediated erythroid differentiation. ECD and PTD mutants also displayed distinct whole-genome transcriptional profiles in EML cells. We observed differences in their signaling properties: they both activated STAT, whereas AKT was only activated by ECD mutants. Consistently, AKT inhibitor suppressed ECD mutant-dependent proliferation, clonogenicity, and erythroid differentiation. Expression of myristoylated AKT restored erythroid differentiation in EML-PTD cells, suggesting the differential role of AKT in those mutants. Overall, our study implied different pathogenesis of pediatric versus adult mastocytosis, which might explain their diverse phenotypes

    Meal patterns associated with energy intake in people with obesity

    No full text
    It is widely assumed that people with obesity have several common eating patterns, including breakfast-skipping (1), eating during the night (2) and high fast-food consumption (3). However, differences in individual meal and dietary patterns may be crucial to optimizing obesity treatment. Therefore, we investigated the inter-individual variation in eating patterns, hypothesizing that individuals with obesity show different dietary and meal patterns, and that these associate with self-reported energy intake (rEI) and/or anthropometric measures. Cross-sectional data from 192 participants (aged 20–55 years) with obesity, including 6 days of weighed food records, were analyzed. Meal patterns and dietary patterns were derived using exploratory hierarchical cluster analysis and k-means cluster analysis, respectively. Five clear meal patterns were found based on the time-of-day with the highest mean rEI. The daily rEI (mean ± SD kcal) was highest among “midnight-eaters” (2550 ± 550), and significantly (p < 0.05) higher than “dinner-eaters” (2060 ± 550), “lunch-eaters” (2080 ± 520), and “supper-eaters” (2100 ± 460), but not “regular-eaters” (2330 ± 650). Despite differences of up to 490 kcal between meal patterns, there were no significant differences in anthropometric measures or physical activity level (PAL). Four dietary patterns were also found with significant differences in intake of specific food groups, but without significant differences in anthropometry, PAL, or rEI. Our data highlight meal timing as a determinant of individual energy intake in people with obesity. The study supports the importance of considering a person’s specific meal pattern, with possible implications for more person-focused guidelines and targeted advice
    corecore