239 research outputs found

    Quarantine Mothering and Working at Home: How Institutions of Higher Education Supported (or Failed to Support) Academic Mothers

    Get PDF
    This mixed methods study explores whether and how explicit policies, implicit practices, and internal communication from university administrators about aca-demic mothers’ work lives and expectations were impacted by the 2020 COVID-19 quarantine protocols. As this was a large study focussing on university policies addressing the presence of children on campus and the ways in which their enforcement or nonenforcement affected the personal and professional lives of faculty, we used purposive sampling (Palys) and snowball sampling (Patton) to distribute a survey in academic social media groups and to professional organization listservs (Palys). Among other things, the survey asked participants to report how well they thought their university was handling the COVID-19 pandemic and invited them to participate in an in-depth interview. As a result of the survey responses, we subsequently interviewed nineteen academic mothers from a range of academic disciplines, ages, and types of institutions, until we reached theoretical saturation (Strauss and Corbin). The semi-structured interview protocol included questions about the impact of COVID-19-related policies, practices, and messaging regarding children on participants’ job satisfaction, mental and physical health, as well as work-life balance. We used open and axial coding (Strauss and Corbin) and the constant comparative method (Glaser and Strauss) to analyze the data. We then triangulated the data by comparing interview and survey findings, engaging multiple researchers in the analysis, and conducting peer debriefings (Denzin and Lincoln; Lincoln and Guba). Findings highlight institutional policies and practices that serve or fail to serve faculty in terms of supporting their professional advancement in teaching, research, and service

    Art Looking within MotherScholarhood: Art Elicitation for Self-Reflections and Sense Making

    Get PDF
    This study continues the ongoing collaborative autoethnographic, arts-based scholarship of three MotherScholars (Burrow et al.). This study presents both the critical self-reflections resulting from and advocacy for the process of art elicitation (Burrow and Burrow), which is a valid and effective methodology to allow MotherScholars a vital pause for valuable personal self-interrogation and renewed clarity within their scholarship. Like our previous research, this study reaffirms that MotherScholars need space and time to reflect on the fluidity and flexibility of their personal-professional identity as it is affected by natural life changes (e.g., children leaving home for college), unexpected transitions (e.g., divorce), and trauma (e.g., global pandemics). The necessity to find malleability in the MotherScholar identity can help women in academia name what they need and recognize what they are already uniquely suited to handle

    The Skits, Sketches, and Stories of MotherScholars

    Get PDF
    “MotherScholars” are those who creatively weave their maternal identities into their scholarly spaces. With this article we invite readers along a collaborative friendship study of our own participatory arts-based journey to understand, reclaim, and identify personal and professional benefits only realized once we acknowledged and embraced the blended reality of Mother Scholarhood. Our work is presented as a curation of individual skits, sketches, and short stories that were created during a collective 8-week time span in a shared virtual space. We open our story to interpretation and interaction through the lenses of our readers

    Coral recruitment is impacted by the presence of a sponge community

    Get PDF
    © 2019 Peng Luo et al., published by De Gruyter, Berlin/Boston. C23H13NO4, monoclinic, P21/n (no. 14), a = 11.6537(6) Å, b = 5.1315(2) Å, c = 26.8047(13) Å, β = 96.266(3)°, V = 1593.4(13) Å3, Z = 4, Rgt(F) = 0.0531, wRref(F2) = 0.1432, T = 90.0(5) K

    Large Scale Flame Spread Environmental Characterization Testing

    Get PDF
    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation strategy to incorporate into the microgravity experiment

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer

    Get PDF
    Angiogenesis is critical for the growth and metastasis of endometrial cancer and is therefore an important therapeutic target. Vascular endothelial growth factor-A (VEGF-A) is a key molecule in angiogenesis, but the identification of related molecules and the angiopoietins suggests a more complex picture. We investigated the presence of transcripts for VEGF-A, VEGF-B, VEGF-C, VEGF-D, Angiopoietin-1 and Angiopoietin-2 in benign endometrium, atypical complex hyperplasia (ACH) and endometrioid endometrial carcinoma using in situ hybridisation. We confirmed the presence of VEGF-A mRNA in the epithelial cells of cancers examined (13 out of 13), but not in benign endometrium or ACH. We also demonstrate, using quantitative polymerase chain reaction, that levels of VEGF-B mRNA are significantly lower in endometrial cancer than benign endometrium. We conclude that loss of VEGF-B may contribute to the development of endometrial carcinoma by modulating availability of receptors for VEGF-A

    Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions

    Get PDF
    Objective: The link between CNS penetration of antiretrovirals and AIDS-defining neurologic disorders remains largely unknown. Methods: HIV-infected, antiretroviral therapy-naive individuals in the HIV-CAUSAL Collaboration who started an antiretroviral regimen were classified according to the CNS Penetration Effectiveness (CPE) score of their initial regimen into low (,8), medium (8-9), or high (.9) CPE score. We estimated "intention-to-treat" hazard ratios of 4 neuroAIDS conditions for baseline regimens with high and medium CPE scores compared with regimens with a low score. We used inverse probability weighting to adjust for potential bias due to infrequent follow-up. Results: A total of 61,938 individuals were followed for a median (interquartile range) of 37 (18, 70) months. During follow-up, there were 235 cases of HIV dementia, 169 cases of toxoplasmosis, 128 cases of cryptococcal meningitis, and 141 cases of progressive multifocal leukoencephalopathy. The hazard ratio (95% confidence interval) for initiating a combined antiretroviral therapy regimen with a high vs low CPE score was 1.74 (1.15, 2.65) for HIV dementia, 0.90 (0.50, 1.62) for toxoplasmosis, 1.13 (0.61, 2.11) for cryptococcal meningitis, and 1.32 (0.71, 2.47) for progressive multifocal leukoencephalopathy. The respective hazard ratios (95% confidence intervals) for a medium vs low CPE score were 1.01 (0.73, 1.39), 0.80 (0.56, 1.15), 1.08 (0.73, 1.62), and 1.08 (0.73, 1.58). Conclusions: We estimated that initiation of a combined antiretroviral therapy regimen with a high CPE score increases the risk of HIV dementia, but not of other neuroAIDS conditions
    • …
    corecore