10 research outputs found

    Into the multiverse: Advances in single-cell multiomic profiling

    Get PDF
    Single-cell transcriptomic approaches have revolutionised the study of complex biological systems, with the routine measurement of gene expression in thousands of cells enabling construction of whole-organism cell atlases. However, the transcriptome is just one layer amongst many that coordinate to define cell type and state and, ultimately, function. In parallel with the widespread uptake of single-cell RNA-seq (scRNA-seq), there has been a rapid emergence of methods that enable multiomic profiling of individual cells, enabling parallel measurement of intercellular heterogeneity in the genome, epigenome, transcriptome, and proteomes. Linking measurements from each of these layers has the potential to reveal regulatory and functional mechanisms underlying cell behaviour in healthy development and disease

    Single-cell gene and isoform expression analysis reveals signatures of ageing in haematopoietic stem and progenitor cells

    Get PDF
    Single-cell approaches have revealed that the haematopoietic hierarchy is a continuum of differentiation, from stem cell to committed progenitor, marked by changes in gene expression. However, many of these approaches neglect isoform-level information and thus do not capture the extent of alternative splicing within the system. Here, we present an integrated short- and long-read single-cell RNA-seq analysis of haematopoietic stem and progenitor cells. We demonstrate that over half of genes detected in standard short-read single-cell analyses are expressed as multiple, often functionally distinct, isoforms, including many transcription factors and key cytokine receptors. We observe global and HSC-specific changes in gene expression with ageing but limited impact of ageing on isoform usage. Integrating single-cell and cell-type-specific isoform landscape in haematopoiesis thus provides a new reference for comprehensive molecular profiling of heterogeneous tissues, as well as novel insights into transcriptional complexity, cell-type-specific splicing events and consequences of ageing

    Copy number signatures and mutational processes in ovarian carcinoma.

    Get PDF
    The genomic complexity of profound copy number aberrations has prevented effective molecular stratification of ovarian cancers. Here, to decode this complexity, we derived copy number signatures from shallow whole-genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases, which were validated on 527 independent cases. We show that HGSOC comprises a continuum of genomes shaped by multiple mutational processes that result in known patterns of genomic aberration. Copy number signature exposures at diagnosis predict both overall survival and the probability of platinum-resistant relapse. Measurement of signature exposures provides a rational framework to choose combination treatments that target multiple mutational processes.NIHR, Ovarian Cancer Action, Cancer Research UK Cambridge Centre, Cambridge Experimental Cancer Medicine Centr

    Toxicity biomarkers in Eisenia Andrei (Annellida) and pesticides bioavailability. New tool in environmental risk assessment

    No full text
    La combustione di biomassa legnosa con piccoli apparecchi e caldaie è oggi vista con rinnovato interesse per il raggiungimento degli obiettivi comunitari di produzione di energia rinnovabile al 2020. L’aumento dell’utilizzo della biomassa combustibile è di stretto interesse del settore agroforestale, per via del notevole indotto economico che peraltro interessa tutto il territorio nazionale. Tuttavia, la combustione della biomassa è legata ad una serie di problematiche ambientali quali le emissioni in atmosfera di polveri sottili che influenzano direttamente la qualità dell’aria. Si ritiene, quindi, che l’auspicato aumento dell’utilizzo delle biomasse, soprattutto ai fini della produzione di calore (riscaldamento ambienti), sia legata al contenimento delle emissioni al camino. In questo contesto, è quindi importante la corretta misura delle polveri emesse dagli apparecchi di riscaldamento domestico alimentati a biomassa solida, tenendo conto anche della frazione condensabile, come richiesto dalla normativa. Il lavoro mette a confronto due tecniche di misura delle polveri, la tecnica di prelievo a caldo con raffreddamento dei fumi in impinger e la tecnica di diluizione con tunnel. Sono stati selezionati per il confronto due apparecchi di ridotta potenza (< 15 kWt) ed elevata efficienza: una caldaia a pellet ed una stufa a pellet. In condizioni di combustione completa le due tecniche restituiscono fattori di emissione simili. Nella stufa a pellet la misura a freddo è maggiore del 20 – 30 % rispetto alla misura a caldo. La ridotta presenza della frazione condensabile è stata confermata dall’analisi NPOC degli impinger. Sono state misurate le emissioni totali prodotte da un utilizzo reale del dispositivo, comprendendo anche le fasi transitorie di combustione (accensione, riscaldamento a regime e spegnimento), solitamente non considerate nelle misure standard di laboratorio. La fase di accensione produce fino a tre volte le polveri emesse in condizioni stazionarie. L’emissione totale si riduce all’aumentare del tempo di utilizzo del dispositivo, rientrando nell’intervallo delle emissioni delle condizioni stazionarie dopo circa 6 h. Gli IPA, emessi in quantità elevate, sono costituiti maggiormente da congeneri a peso molecolare medio – basso, associati a minore tossicità. Il TEQ è funzione della potenza e delle condizioni di combustione del dispositivo

    Defining Cell Identity with Single-Cell Omics

    No full text
    Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation—most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems

    DNA damage in different Eisenia andrei coelomocytes sub-populations after in vitro exposure to hydrogen peroxide

    Get PDF
    Earthworms play an essential role in providing soil fertility and may represent an important soil contamination bio-indicator. They are able to ingest soil particles, adsorb substances throughout the intestinal epithelium into the coelomic cavity, where chemicals can come in direct contact with coelomic fluid. Earthworm coelomic fluid shelters leucocytes (coelomocytes) that differ significantly both structurally and functionally. Cellular variability could lead to different susceptibility towards contaminants possibly present in soil ecosystem. In order to define population specific dose response to chemicals and to identify a homogeneous cell population to be used as a relevant biomarker, we investigated different coelomocytes subpopulation, obtained by Percoll density gradient centrifugation (5–35 %), exposed ex vivo to H2O2 in the range of concentration 15–120 µM. DNA damage levels were assessed by the comet assay on unseparated coelomocytes and on three enriched cellular fractions (light, medium and heavy density subpopulations). All tested samples showed a dose–response genotoxic effect following H2O2 exposure. Moreover, light density sub-population appeared more susceptible to oxidative insult highlighted by a significant increase in DNA damage indexes at lower concentrations of H2O2. Present data suggested that in these experimental condition coelomocytes light fraction may represent a more sensitive biomarker of genotoxic insult

    Evaluation of gene expression of different molecular biomarkers of stress response as an effect of copper exposure on the earthworm eisenia andrei.

    No full text
    The paper reports the results of a laboratory test on the bioaccumulation and toxicological effects of sub-lethal soil concentration of copper, a widely used fungicide in organic farming, on DNA damage, a critical marker increasingly used in ecotoxicology in the earthworm Eisenia andrei. In the same experimental setting we evaluated gene expression of classical biomarker of stress induced by xenobiotic. [Heat Shock Protein 70 (HSP70) and Metallothionein (MET)], as well as genes coding for enzymes involved in detoxification of reactive oxygen species [Superoxide dismutase (SOD) and catalase (CAT)]. Additionally, expression of genes involved in the immune response were investigated: a Toll-like receptor (TLR), a receptor with cytolytic activity named Cytolytic Factor (CCF) and two antimicrobial peptides, fetidin (FET) and lysenin (LYS). Results showed significant time-dependent bioaccumulation of Cu and DNA damage at concentrations remarkably lower than those found in most agricultural soils worldwide. MET was increased as was FET and TLR. The present work gives new insights into the mechanisms of sub-lethal toxicity of copper as an environmental pollutant and in the identification of novel sub-lethal biomarkers of cellular response to the stressor such as immune response genes

    Absence of the primary cilia formation gene Talpid3 impairs muscle stem cell function

    Get PDF
    Abstract Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration

    Genomic analyses identify molecular subtypes of pancreatic cancer

    No full text
    © 2016 Macmillan Publishers Limited. All rights reserved.Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63ΔN transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development
    corecore