109 research outputs found

    Subantarctic Mode Water variability influenced by mesoscale eddies south of Tasmania

    No full text
    [1] Subantarctic Mode Water (SAMW) is formed by deep mixing on the equatorward side of the Antarctic Circumpolar Current. The subduction and export of SAMW from the Southern Ocean play an important role in global heat, freshwater, carbon, and nutrient budgets. However, the formation process and variability of SAMW remain poorly understood, largely because of a lack of observations. To determine the temporal variability of SAMW in the Australian sector of the Southern Ocean, we used a 15 year time series of repeat expendable bathythermograph sections from 1993 to 2007, seven repeat conductivity-temperature-depth sections from 1991 to 2001, and sea surface height maps. The mean temperature of the SAMW lies between 8.5°C and 9.5°C (mean of 8.8°C, standard deviation of 0.3°C), and there is no evidence of a trend over the 18 year record. However, the temperature, salinity, and pycnostad strength of the SAMW can change abruptly from section to section. In addition, the SAMW pool on a single section often consists of two or more modes with distinct temperature, salinity, and vertical homogeneity characteristics but similar density. We show that the multiple types of mode water can be explained by the advection of anomalous water from eddies and meanders of the fronts bounding the Subantarctic Zone and by recirculation of SAMW of different ages. Our results suggest that infrequently repeated sections can potentially produce misleading results because of aliasing of high interannual variability

    Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion carbon capture

    Get PDF
    Selective Exhaust Gas Recirculation (S-EGR) consists of selectively transferring CO2 from the exhaust gas stream of a gas-fired power plant into the air stream entering the gas turbine compressor. Unlike in “non-selective” Exhaust Gas Recirculation (EGR) technology, recirculation of, principally, nitrogen does not occur, and the gas turbine still operates with a large excess of air. Two configurations are proposed: one with the CO2 transfer system operating in parallel to the post-combustion carbon capture (PCC) unit; the other with the CO2 transfer system operating downstream of, and in series to, the PCC unit. S-EGR allows for higher CO2 concentrations in the flue gas of approximately 13-14 vol%, compared to 6.6 vol% with EGR at 35% recirculation ratio. The oxygen levels in the combustor are approximately 19 vol%, well above the minimum limit of 16 vol% with 35% EGR reported in literature. At these operating conditions, process model simulations show that the current class of gas turbine engines can operate without a significant deviation in the compressor and the turbine performance from the design conditions. Compressor inlet temperature and CO2 concentration in the working fluid are critical parameters in the assessment of the effect on the gas turbine net power output and efficiency. A higher turbine exhaust temperature allows the generation of additional steam which results in a marginal increase in the combined cycle net power output of 5% and 2% in the investigated configurations with S-EGR in parallel and S-EGR in series, respectively. With aqueous monoethanolamine scrubbing technology, S-EGR leads to operation and cost benefits. S-EGR in parallel operating at 70% recirculation, 97% selective CO2 transfer efficiency and 96% PCC efficiency results in a reduction of 46% in packing volume and 5% in specific reboiler duty, compared to air-based combustion CCGT with PCC, and of 10% in packing volume and 2% in specific reboiler duty, compared to 35% EGR. S-EGR in series operating at 95% selective CO2 transfer efficiency and 32% PCC efficiency results in a reduction of 64% in packing volume and 7% in specific reboiler duty, compared to air-based, and of 40% in packing volume and 4% in specific reboiler duty, compared to 35% EGR. An analysis of key performance indicators for selective CO2 transfer proposes physical adsorption in rotary wheel systems as an alternative to selective CO2 membrane systems. A conceptual design assessment with two commercially available adsorbent materials, activated carbon and Zeolite X13, shows that it is possible to regenerate the adsorbent with air at near ambient temperature and pressure. Yet, a significant step change in adsorbent materials is necessary to design rotary adsorption systems with dimensions comparable to the largest rotary gas/gas heat exchanger used in coal-fired power plants, i.e. approximately 24 m diameter and 2 m height. An optimisation study provides guidelines on the equilibrium parameters for the development of materials. Finally, a technical feasibility study of configuration options with rotary gas/gas heat exchangers shows that cooling water demand around the post-combustion CO2 capture system can be drastically reduced using dry cooling systems where gas/gas heat exchangers use ambient air as the cooling fluid. Hybrid cooling configurations reduce cooling and process water demand in the direct contact cooler of a wet cooling system by 67% and 35% respectively, and dry cooling configurations eliminate the use of process and cooling water and achieve adequate gas temperature entering the absorber

    Carbon capture retrofit options with the on-site addition of gas turbine combined heat and power cycle

    Get PDF
    AbstractThis article examines the economic factors that may be important in determining the overall performance of coal plants retrofitted with an additional gas turbine combined heat and power cycle. A comparison is made with an integrated retrofit where steam is extracted from the power cycle

    Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer

    Full text link
    Background: In hypoxic tumors, positive feedback between oncogenic KRAS and HIF-1α involves impressive metabolic changes correlating with drug resistance and poor prognosis in colorectal cancer. Up to date, designed KRAS-targeting molecules do not show clear benefits in patient overall survival (POS) so pharmacological modulation of aberrant tricarboxylic acid (TCA) cycle in hypoxic cancer has been proposed as a metabolic vulnerability of KRAS-driven tumors. Methods: Annexin V-FITC and cell viability assays were carried out in order to verify vitamin C citotoxicity in KRAS mutant SW480 and DLD1 as well as in Immortalized Human Colonic Epithelial Cells (HCEC). HIF1a expression and activity were determined by western blot and functional analysis assays. HIF1a direct targets GLUT1 and PDK1 expression was checked using western blot and qRT-PCR. Inmunohistochemical assays were perfomed in tumors derived from murine xenografts in order to validate previous observations in vivo. Vitamin C dependent PDH expression and activity modulation were detected by western blot and colorimetric activity assays. Acetyl-Coa levels and citrate synthase activity were assessed using colorimetric/fluorometric activity assays. Mitochondrial membrane potential (Δψ) and cell ATP levels were assayed using fluorometric and luminescent test. Results: PDK-1 in KRAS mutant CRC cells and murine xenografts was downregulated using pharmacological doses of vitamin C through the proline hydroxylation (Pro402) of the Hypoxia inducible factor-1(HIF-1)α, correlating with decreased expression of the glucose transporter 1 (GLUT-1) in both models. Vitamin C induced remarkable ATP depletion, rapid mitochondrial Δψ dissipation and diminished pyruvate dehydrogenase E1-α phosphorylation at Serine 293, then boosting PDH and citrate synthase activity. Conclusion: We report a striking and previously non reported role of vitamin C in the regulation of the pyruvate dehydrogenase (PDH) activity, then modulating the TCA cycle and mitochondrial metabolism in KRAS mutant colon cancer. Potential impact of vitamin C in the clinical management of anti-EGFR chemoresistant colorectal neoplasias should be further considered.This research is supported by Ministerio de Ciencia e Innovación, Centro para el Desarrollo Tecnológico Industrial (CDTI) and Universidad Católica San Antonio (Murcia

    Design of a new high lateral resistance sleeper and performance comparison with conventional sleepers in a curved railway track by means of finite element models

    Full text link
    The lack of lateral resistance in a curved railway track can produce misalignment problems due to the centrifugal forces when the trains pass through. Moreover, most of the times continuous welded rails (CWR) are used in nowadays railway tracks, which can induce the track buckling as a result of thermal loads caused by high temperature gradients. A new sleeper has been designed to provide higher lateral resistance of the track. A finite element model has been developed to analyze the lateral movements of an actual curved track subjected to lateral resistance problems. Then, variations on the finite element model have been made to study the response of the track when different sleepers are used. Thus, the performance of the different sleepers in the modeled track has been analyzed, resulting that the inclusion of the new sleeper in the track can improve the lateral resistance between 39 and 55 % with respect to a track with conventional sleepers made of wood or concrete.Montalban Domingo, ML.; Real Herráiz, JI.; Zamorano, C.; Real Herraiz, TP. (2014). Design of a new high lateral resistance sleeper and performance comparison with conventional sleepers in a curved railway track by means of finite element models. Latin American Journal of Solids and Structures. 11(7):1238-1250. http://hdl.handle.net/10251/55258S1238125011
    corecore