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Abstract   

In the context of the process intensification of Post-combustion Carbon Capture (PCC), Selective 

Exhaust Gas Recirculation (SEGR) in Natural Gas-fired Combined Cycle (NGCC) plants, a concept 

where CO2 is selectively recycled to increase concentration and reduce flow rates of the flue gas, is 

analysed. SEGR operated either in parallel or in series with a downstream PCC system increases CO2 

concentration beyond 14 vol% and maintains oxygen levels in the combustor to approximately 19 vol%, 

well above the 16 vol% limit reported for non-selective Exhaust Gas Recirculation (EGR). Process 

modelling shows that the current class of gas turbine engines can operate without a significant deviation 

in the compressor and in the turbine performance. Compressor inlet temperature and CO2 concentration 

in the working fluid are the two critical parameters affecting the gas turbine net power output and 

efficiency. A higher turbine exhaust temperature allows the generation of additional steam in the HRSG. 

This results in an increase in net power output of approximately 42 MW (5.2%) and 18 MW (2.3%), 

and in net thermal efficiency of 0.55 %point and 0.83 %point, for the investigated configurations with 

SEGR in parallel and SEGR in series, respectively. With 30 wt% aqueous monoethanolamine scrubbing 

technology, SEGR leads to operation and cost benefits. SEGR in parallel with 70% recirculation, 97% 

selective CO2 transfer efficiency and 96% PCC efficiency results in a reduction of 46% in packing 

volume and 5% in specific reboiler duty, compared to air-based combustion CCGT with PCC, and of 

10% in packing volume and 2% in specific reboiler duty, compared to 35% EGR. SEGR in series 

operating at 95% selective CO2 transfer efficiency and 32% PCC efficiency results in a reduction of 

64% in packing volume and 7% in specific reboiler duty, compared to air-based CCGT with PCC, and 

of 40% in packing volume and 4% in specific reboiler duty, compared to 35% EGR. On selecting a 

technology for SEGR applications, CO2 selectivity, pressure drop and heat transfer flow rate are the 

operating parameters with a larger effect on the power plant performance with SEGR. It is important to 

minimise oxygen leakages from the air into the flue gas, minimise heat transfer that would otherwise 

increase CO2-enriched air temperature at compressor inlet, and minimise pressure drop, e.g. a 1kPa 

pressure drop results in gas turbine derating of 2 MW (0.7%). 
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1. Introduction and background 

Power generation from natural gas-fired Combined Cycle and Open Cycle Gas Turbines (CCGT and 

OCGT) appears as a cost-effective option to meet the need for new electricity generation and contribute 

to reduce CO2 emissions from the power sector. In the UK, approximately 20 GW of new generation 

capacity with CCGT plants is expected to contribute to the UK fossil fleet that will be used to fill the 

gap between the demanded electricity and renewable and nuclear output to ensure security of supply 

while maintaining operational flexibility required in the electricity system (CCC, 2015; DECC, 2015). 

A shift from coal to unabated gas would help to reduce emissions in the short term, yet CCGT plants 

still produce on average 350-400 gCO2/ kWh, well above the levels required for deep decarbonisation 

of electricity generation of 50 gCO2/kWh (CCC, 2015).  

Post-combustion CO2 capture (PCC) from exhaust flue gases in natural gas-fired power plants raises 

new challenges due to lower CO2 concentrations and the larger size of the capture plant absorber train 

and auxiliary equipment. In this context, the selective recycling of CO2, referred hereby as Selective 

Exhaust Gas Recirculation (SEGR), is an effective concept to increase CO2 concentration and reduce 

flow rates of exhaust flue gases. In particular, it allows higher CO2 concentrations than those with “non-

selective” Exhaust Gas Recirculation (EGR), while maintaining oxygen levels in the gas turbine 

combustor. It effectively intensifies the capture process to achieve cost reduction in the PCC absorber 

train. The UK Energy Technology Institute reports that every 10% reduction in in the capture plant 

capital costs (CAPEX) reduces the electricity cost of CCGT with CCS by 1.5 – 2% for load factor of 

base load plants (ETI 2016). These benefits become increasingly significant for low load factor 

operation, a likely outcome in electricity grids with increasing amount of variable renewable generation.  

SEGR consists on selectively transferring CO2 from a flue gas stream into an air stream which enters 

the gas turbine compressor. Since other components in the flue gas are ideally not recirculated, e.g. 

nitrogen and water vapour, less amount of excess air is replaced and higher CO2 concentrations are 

possible in the flue gas, while the oxygen concentration in the combustor remains above the 17 vol% 

limit reported for non-selective EGR in a GE Class F gas turbine engine (ElKady et al., 2009; Evulet et 

al., 2009). The technical challenges for the integrated power generation system associated with SEGR 

have received little attention to date, unlike for EGR. 

1.1 Exhaust Gas Recirculation  

The highest CO2 concentration achievable in the flue gas with EGR is limited by the lowest oxygen 

levels in the combustor that ensure flame stability and complete combustion, with levels of CO and 

unburned hydrocarbons (UHCs) at exhaust that achieve environmental compliance with local 

environmental regulations (Li, Ditaranto, et al. 2011).  
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Combustion tests performed on a bench-scale lean pre-mixed burner used in Dry Low-NOx (DLN) 

combustor systems, currently employed in General Electric (GE) Class F gas turbine technology 

concluded that minimum oxygen concentration of 16-17 vol% is necessary for good combustion 

efficiency. Yet lowering the oxygen level below 16 vol% might be possible with minor modifications 

of the combustion system or at larger operating pressures while complying with CO emissions (Røkke 

and Hustad 2005; ElKady et al. 2009; Evulet et al. 2009). A 17 vol% oxygen concentration in the 

combustor is achieved at 35% recirculation ratio in a GE Class F gas turbine typically operated at 150% 

excess of air. This results in 6 vol% CO2 and 7.5 vol% O2 in the flue gas at the turbine exhaust and 

allows to a NOx emissions reduction of approximately 50% (ElKady et al., 2009). The recirculation 

ratio that corresponds to a O2 concentration in the combustor depends on the design turbine inlet 

temperature (TIT), since this parameter defines the amount of excess of air, and on the cooling air 

requirements. A lower TIT allows for higher recirculation ratios but acts on detriment of the gas turbine 

thermal efficiency.  

The feasibility of operating GT26/24 sequential combustion gas turbine engines with EGR has been 

investigated conducting process simulations (Guethe, Cruz Garcia and Burdet, 2009) and experimental 

combustion tests in a full-sized industrial lean premix burner (Burdet et al., 2010), and in a single burner 

reheat combustion test rig (Guethe et al., 2011). The engine operates at higher pressure ratio and the 

sequential combustion system, which consists of a generic lean premix dry low-NOx burner followed 

by reheat burner with a high-pressure expansion stage in between, allows to decouple the two main 

limiting factors for operation with EGR, i.e. flame stability and CO emissions. The premix burner flame 

is sustained and stable for O2 concentrations in combustion gases within a range from 2 to 5 vol%, which 

leads to CO2 concentrations in flue gases within a range from 6 to 9 vol% (Burdet et al., 2010; Sander 

et al., 2011) and CO emissions are lowered in the reheated burner, which runs stable in auto ignition 

mode due to the high inlet temperature (Guethe et al., 2011).  

With most of the work focused on the combustion process, the performance of the gas turbine with EGR 

have received less attention. Jonshagen et al. (2011) conduct process simulations of a CCGT plant 

equipped with a GE Class F gas turbine engine. A small deviation of the compressor and the turbine 

operating conditions from the design point is expected at recirculation ratios up to 40%, as result of the 

small variation of the dimensionless parameter groups typically used to describe off-design performance 

(Jonshagen, Sipöcz and Genrup, 2011). Sander et al. (2011) have investigated the effect of EGR in 

sequential combustion gas turbine engines through process simulations. The temperature of the recycled 

gas stream has a large effect on the combined cycle performance, since a higher gas turbine compressor 

inlet temperature leads to gas turbines derating, yet the higher exhaust temperature may balance the 

previous effect, with an overall increase in the combined cycle net power output (Sander et al. 2011). 

Operating and cost benefits on the capture plant have been evaluated for two PCC technologies: flue gas 

scrubbing with amine-based solvents and membrane systems. Process simulations with rigorous models 
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of a capture system using 30 wt% monoethanolamine (MEA) aqueous solutions are conducted to 

quantify the reduction in the specific reboiler duty and the size of the absorber column (Aboudheir and 

ElMoudir, 2009; Li et al., 2011; Sipöcz and Tobiesen, 2012; Biliyok and Yeung, 2013; Vaccarelli, 

Carapellucci and Giordano, 2014). A 30 wt% piperazine (PZ) aqueous solution has been used  in recent 

work (Zhang et al., 2016) focused on intercooling options in the absorber.  

A considerably decrease in the specific reboiler duty is expected for high CO2 concentrations in the flue 

gas up to approximately 6 vol%. For higher CO2 concentrations, the specific reboiler duty continues to 

decrease at a lower rate (Li et al., 2011). Li et al. (2011) report that EGR at 50% recirculation ratio 

allows to increase CO2 concentration from 3.8 vol% to 7.9 vol% and reduce the mass gas flow rate 

entering the absorber by 51%. It results in an 8% reduction of the reboiler energy consumption, from 4 

to 3.7 MJ/kg CO2.  Simulations performed at SINTEF/NTU (Sipöcz and Tobiesen 2012) show the 

possibility to achieve a CO2 concentration of 7.8 vol% at the absorber inlet for 40% recirculation ratio. 

It results in a 9% decrease in the specific reboiler duty, from 3.97 to 3.64 MJ/kg CO2. Biliyok and Yeung 

(2013) report an increase in the CO2 concentration from 4 vol%  to 6.6 vol% at 40% EGR ratio and a 

decrease in the reboiler duty of 7.5%, from 4 to 3.72 MJ/kg CO2. The reduction in the absorber packing 

volume is approximately equal to the fraction of recycled flue gas.  

An experimental test campaign has been conducted at the Pilot-scale Advance Capture Technology 

(PACT) facilities at the UK Carbon Capture and Storage Research Centre (UKCCSRC) for 30 wt% 

MEA scrubbing technology. Akram et al. (2016) show a reduction in the specific reboiler duty of around 

7.1% relative per unit percent increase in CO2 concentration (Akram et al., 2016), from 7.1 to 5.3 

MJ/kgCO2 when the CO2 concentration is increased from 5.5 to 9.9 vol%. Yet, there is a need to compare 

results on a consistent basis in a PCC system optimised for the reference configuration.  

1.2 Selective exhaust gas recirculation 

Merkel et al. (2013) report that CO2 concentrations of approximately 19 vol% and 14 vol% are possible 

at inlet of the PCC system with SEGR in parallel and SEGR in series respectively, significantly higher 

than with EGR, for a 16 vol% oxygen level in the gas turbine combustor. Large selective recirculation 

ratios and/or considerably high efficiencies for the selective CO2 transfer system are however required 

(Merkel et al. 2013).  

The technical challenges of SEGR in a CCGT plant are, similarly to “non-selective” EGR, changes in 

operability, flame stability, combustion efficiency, emissions of carbon monoxide (CO) and unburned 

hydrocarbons (UHCs), heat transfer with a modified working fluid. CO2 acts as a combustion inhibitor 

leading to a flame instability, blow-off and eventual extinction of the flame. The first combustion study 

at operating conditions which are consistent with the configurations presented in this article was recently 

reported by Marsh et al (2016). They used a representative swirl burner with premixed flame to identify 

the range of equivalence ratios for stable operation, between the blow-off and the flashback limits, for 
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a range of CO2 concentrations in the comburent up to 20 vol%, although at combustion pressures of 1.1 

bar and 2.2 bar, which is well below the operating pressure of a large scale gas turbine. They show that 

high CO2 concentrations require near stoichiometric air-fuel ratios for stable operation, with subsequent 

increase in CO emissions at these low pressures (Marsh et al., 2016). 

Energetic savings and capital cost reduction in the capture plant has been investigated for selective CO2 

membrane systems (Merkel et al., 2013; Swisher and Bhown, 2014; Voleno et al., 2014; Turi et al., 

2017) and chemical absorption with amine-based solvents (Merkel et al., 2013; Zhang et al., 2016). 

Merkel et al. (2013) use the concept of the ideal minimum energy for CO2 separation, compression and 

liquefaction, however a rigorous investigation is still required. 

1.3 Objectives 

This article first evaluates a range of possible CO2 concentrations that can be achieved in the exhaust 

flue gas and the corresponding oxygen levels in the combustor. An operating framework where SEGR 

presents advantages compared to non-selective EGR at 35% recirculation ratio is then identified. 

Information regarding operating conditions to conduct combustion tests within the scope of the EPSRC 

SELECT project (SELECT, 2014) have also been provided. 

Two configurations of an integrated CCGT plant with SEGR and PCC are compared in this work. They 

are based on previous work by Membrane Technology & Research (Baker et al. 2011; Wijmans et al. 

2011; Wijmans, Merkel and Baker 2012; Merkel et al. 2013), which focuses on membrane based systems 

for air enrichment with CO2 and downstream CO2 capture.  

• A configuration consisting of diverting a fraction of the exhaust of the HRSG into a system 

transferring CO2 into the inlet air stream of the gas turbine compressor. The selective CO2 transfer 

system operates “in parallel” to the PCC process. 

• A configuration consisting of a selective CO2 transfer system operated downstream of, and “in series” 

to, the PCC process.  

The process flow diagrams for a CCGT plant with SEGR in parallel and SEGR in series are illustrated 

in Figure 1 and Figure 2, respectively.  

Strategies to enhance CO2 capture rates should aim to introduce minimal modifications in the gas turbine 

engine, since current gas turbine technology presents a high efficiency and play an important role in 

achieving a high combined cycle net power output. Any mayor modifications to gas turbine engines 

requires long lead development time to be implemented tested and optimised and development cost may 

only be justified if they can be amortised via deployment on a representative fraction of the market, that 

with CCS. It is therefore important to investigate whether the existing class of gas turbines can be 

operated with a fraction of combustion gases being recycled to the inlet of the system, and assess the 

overall impact on the CCGT power plant with CCS. A technical investigation of the overall effect on 
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the integrated power system with CO2 capture, including the compressor and the turbine of a Class F 

gas turbine engine and the HRSG/combined cycle, is conducted for the first time here, adapting the 

methodology of Jonshagen et al. (2011) for EGR.  

Operating and costs benefits on the PCC system should balance costs associated to the additional system 

for CO2 transfer. Rigorous process model simulations are then performed to quantitatively evaluate the 

effect of the high flue gases CO2 concentrations on the CO2 capture process, using chemical absorption 

technology with MEA aqueous solvent as a benchmark system. Results are compared to an air-based 

combustion CCGT plant with PCC and to a CCGT plant with EGR at 35% recirculation ratio and PCC 

on a consistent basis. 

Finally, this paper identifies the design parameters and operating variables of a generic selective CO2 

transfer system that have a larger effect on the combined cycle performance. A sensitivity analysis of 

the gas turbine and combined cycle performance to a variation of these parameters is conducted with 

the purpose of covering a wide range of operating conditions and, thus, extend the results and discussion 

to a range of possible technologies.  
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Figure 1.- Process flow diagram for a Combined Cycle Gas Turbine power plant with Selective Exhaust Gas Recirculation in parallel to the Post-combustion CO2 

Capture process. 

The image part with relationship ID rId9 was not found in the file.

The image part with relationship ID rId9 was not found in the file.
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Figure 2.- Process flow diagram for a Combined Cycle Gas Turbine power plant with Selective Exhaust Gas Recirculation in series to the Post-combustion CO2 

Capture process.  
 

The image part with relationship ID rId9 was not found in the file.

The image part with relationship ID rId9 was not found in the file.
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Figure 3.- Process flow diagrams of the Post-combustion CO2 Capture plant with amine-based chemical absorption technology and the CO2 compression train. 

The image part with relationship ID rId9 was not found in the file.

The image part with relationship ID rId9 was not found in the file.
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2. Methodology  

The assessment of the effect of SEGR on the performance of a CCGT plant and of the benefits on the 

PCC system are investigated for two configurations: 

• A CCGT plant with SEGR in parallel to the PCC system 

• A CCGT plant with SEGR in series to the PCC system 

Results from process model simulations are compared to those for an air-based combustion CCGT plant 

with PCC and a CCGT plant with non-selective EGR and PCC, which are also modelled in this work to 

be able to establish a comparison on a consistent basis. For comparison, a 35% recirculation ratio is 

considered for non-selective EGR, since it leads to the highest CO2 concentration in exhaust flue gases 

maintaining an oxygen level of 16 vol% (wet basis), limiting level for GE Class F gas turbine engines, 

as explained in Section 1.1. The methodology is extensively described in Herraiz’s work (2016) and 

summarised here. 

2.1 Reference configuration: Air-based combustion CCGT plant with PCC 

The reference plant is a natural gas combined cycle with a 2-in-1 configuration: two GE Class F 

(GE9371) gas turbines with the flue gas exiting into two HRSGs, which jointly supply steam to a 

subcritical triple pressure steam cycle. The gas turbines operate at a pressure ratio of 18, a turbine inlet 

temperature (TIT) of 1371 ºC and air fuel ratio (AFR) of 40.5 on mass basis at ISO ambient conditions 

and 100% load, with a power output at coupling of 285.5 MWe. The design parameters of the reference 

plant are based on the information provided in a report commissioned by the International Energy 

Agency Greenhouse Gas R&D Programme (IEAGHG 2012). The flue gas stream leaving each HRSG 

is treated in a PCC plant. The flue gas is first cooled down in a gas/gas heat exchanger and then in a 

direct contact cooler, entering the absorber saturated at 45 ºC. One PCC plant is considered per GT-

HRSG train. The net power output of the reference NGCC power plant equipped with PCC is 777 MWe 

with a net thermal efficiency of 52%.  

The PCC system consists of a conventional chemical absorption plant with 30 wt% monoethanolamine 

(MEA) aqueous solution. The process flow diagram is illustrated in Figure 3. Steam for solvent 

regeneration is supplied to the reboiler designed for saturated steam at 3 bar. Superheated steam is 

extracted from the LP superheater in the HRSG and from the IP/LP crossover, as illustrated in Figure 1 

and Figure 2. The LP drum and the IP/LP crossover are designed for an operation pressure of 4 bar to 

overcome the pressure drop estimated at approximately 1 bar along the pipe. The steam is then suitably 

conditioned for reboiler use. The superheated steam is cooled in a heat exchanger and a sprayed nozzle 

desuperheater (Spirax Sarco, 2016) reduces the amount of residual superheat to 3 ºC using part of the 

reboiler condensate return. The condensate from the reboiler is pumped back to the steam cycle and it 
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is injected in the deaerator. This option is proposed as an alternative to the configuration in the IEAGHG 

R&D Programme’s report (IEAGHG 2012).  

A detailed description of the integrated model consisting of a CCGT plant, a CO2 capture system and a 

CO2 compression train is included in Herraiz’s work (2016). Design and operating parameters are 

provided in Appendix A.  

The CCGT power plant model is built in gPROMS Model Builder (PSE, 2016) with customised models 

for each piece of equipment. The PCC plant and the CO2 compression train are modelled in Aspen Plus 

V7.0 (Aspen Tech, 2016). The absorber is simulated with a rate-based model which includes reaction 

kinetics and thermodynamic equilibrium for the CO2-H2O-MEA system, as well as mass transfer and 

heat transfer phenomena (Razi, Svendsen and Bolland, 2013; Sanchez Fernandez et al., 2014). The 

stripper column is simulated with an equilibrium model. The CO2 recovery ratio is set to control the lean 

solvent CO2 loading at which the stripper column operates and this value is selected to bring the specific 

heat consumption to a minimum.  

The CO2-rich gas stream leaves the condenser of the stripper column at 40 ºC and 2 bar, with a CO2 

purity of 95 vol% and is compressed up to around the critical pressure, i.e. 73.8 bar, in the compression 

train. It consists of three stages with intercooling and water separation between stages. Liquid phase 

CO2 at 73 bar and 28 ºC is pumped up to 110 bar for transport and storage in supercritical/dense phase. 

2.2 Modelling methodology for operation with SEGR 

2.2.1 Combined cycle gas turbine plant operation with SEGR  

In the assessment of the performance of commercially available Class F gas turbine engines with SEGR, 

the same GT engine as for the reference configuration is considered for all the configurations. Yet 

different inlet pressure, temperature and working fluid composition result in an off-design operation of 

a GT originally designed for air combustion with inlet air at ISO ambient conditions. The assessment 

procedure consists of evaluating the thermal and physical properties of the working fluid through the 

turbomachinery, quantifying the deviation of the actual operation point in the compressor and in the 

turbine from the design point, and evaluating the GT power output and thermal efficiency. 

The steam cycle is specifically designed for the GT exhaust temperature and flow rate in each 

configuration. The same arrangement of the heat transfer banks and pressure levels as in the reference 

configuration are considered in all the configurations, yet heat transfer areas and steam flow rates are 

then evaluated for each configuration following the same design criteria. The overall effect is finally 

investigated in terms of combined cycle power output and thermal efficiency.  

The selective CO2 transfer (SCT) system is modelled here as a “grey box”. The concept of a “grey box” 

implies that inlet stream variables and operating parameters with a large effect on the overall process 
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are specified in the model. The key operating parameters are selective CO2 transfer (SCT) efficiency, 

selectivity for CO2 over other components in the flue gas, leakage levels, pressure drop and heat transfer 

rate or temperature pinch at the hot end. The SCT efficiency refers to the amount of CO2 removed from 

the flue gas and transferred into the air stream relative to the total amount of CO2 at the inlet of the SCT 

system, as indicated in Equation [1]. Initial values of these parameters are the result of a conceptual 

design assessment of a SCT system using a rotary wheel for adsorption with structured solid materials 

conducted by Herraiz (2016). Results from this conceptual design are not presented in this work. Yet a 

sensitivity analysis is performed in Section 5 to quantify the effect of a range of values of these 

parameters on the performance of the CCGT.  

SCT efficiency = 1 −
|mol CO2| SCT system outlet

|mol CO2| SCT system inlet
 [1] 

A low temperature is preferable at the inlet of the SCT system to minimise sensible heat transfer and 

ensure a low temperature at the GT inlet. A low temperature also enhances the CO2 transfer capacity for 

certain technologies, such as adsorption. It is assumed here that the flue gas enters the SCT system 

saturated in moisture at 30 ºC. In SEGR in parallel, the diverted flue gas stream coming from a gas/gas 

heat exchanger is cooled down in a DCC, as illustrated in Figure 1. In SEGR in series, the flue gas 

leaving the absorber is cooled down either in the absorber water wash section or in an additional DCC 

downstream of the absorber column, as illustrated in Figure 2. 

2.2.1.1 Gas turbine performance with SEGR 

The mass flow rate swallowed by the GT compressor varies with changes in the density of the CO2-

enriched air for a fixed compressor geometry assumed here, for which the position of the variables inlet 

guide vanes (VIGV) is set at the corresponding angle for full load operation. The intake mass flow rate 

is therefore evaluated as a function of the density of the CO2-enriched air stream at the GT compressor 

inlet according to the continuity equation, for constant cross section area (A) and axial flow velocity 

(Cx). The temperature of the air is likely to rise as it passes through the SCT system regardless the 

technology employed, mainly due to sensible heat transfer from the flue gas into the air stream. Euler’s 

equation is used to evaluate the specific absolute enthalpy rise per stage and the stage efficiency in the 

compressor. It is also assumed that relative flow angles, axial flow velocity and mean rotor speed are 

constant and equal to the deign point (Herraiz, 2016). 

A criterion considered in this work is to assume that the gas turbine is chocked when running at full load 

(Sánchez et al., 2010). The condition of chocked flow is then applied at the throat of the nozzle 

constituted by two consecutive blades of the first ring of stator vanes, and Equation [2] is established at 

the inlet section of the turbine. A reorganisation of Equation [2] leads to Equation [3], where the 
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coefficient 𝐾𝐾𝑇𝑇 is the turbine swallowing capacity and  should remain constant for a choked turbine 

(Cooke, 1985). 

𝑚̇𝑚 = 𝑃𝑃0 ∙ 𝐴𝐴 ∙ �
𝛾𝛾 ∙ 𝑀𝑀𝑀𝑀
𝑍𝑍 ∙ 𝑅𝑅𝑢𝑢 ∙ 𝑇𝑇0

�
2

𝛾𝛾 + 1
�
𝛾𝛾+1 𝛾𝛾−1⁄

 [2] 

𝐾𝐾𝑇𝑇 =
𝑚̇𝑚
𝑃𝑃0
∙ �

𝑍𝑍 ∙ 𝑇𝑇0
𝛾𝛾 ∙ 𝑀𝑀𝑀𝑀

�
𝛾𝛾 + 1

2
�
𝛾𝛾+1 𝛾𝛾−1⁄

 [3] 

Variations in the working fluid composition are considered by means of the fluid properties, such as 

molar mass (𝑀𝑀𝑀𝑀), compressibility factor (𝑍𝑍) and the ratio of specific heats or isentropic factor (𝛾𝛾). 

Equation [3] establishes the pressure at the turbine inlet (𝑃𝑃0), for a given temperature (𝑇𝑇0) and 

combustion gases mass flow rate (𝑚̇𝑚) at the exit of the combustor. The compressor discharge pressure 

is evaluated considering a pressure drop through the combustor for the corresponding mass flow rates 

in each configuration (Walsh and Fletcher 2004). The natural gas flow rate and the cooling air flow rate, 

extracted from the last compression stage, are evaluated to maintain the same combustor outlet 

temperature (COT) and the same TIT as in the reference configuration, respectively.  

The deviation on the dimensionless parameter groups for mass flow (MF), pressure ratio (PR) and 

rotational speed (N) are used to investigate the effect on the performance of the compressor and turbine 

of a change in the working fluid properties with SEGR and EGR, according to Equations [4], [5] and 

[6]. Since geometry and dimensional parameters of commercial gas turbine systems are not available in 

the public domain, deviations of these parameters from the design conditions are considered instead of 

absolute values. The physical meaning and the derivation procedure are explained in Herraiz’s work 

(2016). The fundamental principle is that, if Mach numbers derived for the velocity components of the 

fluid in the blades, i.e. absolute velocity, relative velocity and rotational speed, are the same, the velocity 

diagrams are uniform and the Reynolds number is constant, unique flow conditions are then obtained 

(Dixon and Hall, 1998). Each point on the turbomachinery characteristic curve based on these 

dimensionless groups should therefore represent unique flow conditions and a new operational point can 

be identified in performance maps developed for air-based combustion (Jonshagen, Sipöcz and Genrup, 

2011).  

�𝑀𝑀𝑀𝑀𝑐𝑐𝑥𝑥 �air = �𝑀𝑀𝑀𝑀𝑐𝑐𝑥𝑥 �SEGR, then  

𝑀𝑀𝑀𝑀 deviation =

𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎
𝑚̇𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

∙ �
𝑇𝑇0SEGR
𝑇𝑇0ref

𝑃𝑃SEGR
𝑃𝑃ref

∙ �𝛾𝛾SEGR𝛾𝛾air
∙ 𝑅𝑅air𝑅𝑅SEGR

 [4] 
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[𝑀𝑀𝑀𝑀𝑈𝑈]air = [𝑀𝑀𝑀𝑀𝑈𝑈]SEGR   , then  

𝑁𝑁deviation = �𝛾𝛾air ∙ 𝑇𝑇0ref ∙ 𝑅𝑅air �𝛾𝛾SEGR ∙ 𝑇𝑇0SEGR ∙ 𝑅𝑅SEGR�  [5] 

�𝑀𝑀𝑀𝑀𝑈𝑈 ∙ 𝑀𝑀𝑀𝑀𝐶𝐶𝜃𝜃�air = �𝑀𝑀𝑀𝑀𝑈𝑈 ∙ 𝑀𝑀𝑀𝑀𝐶𝐶𝜃𝜃�SEGR   , then   

𝑃𝑃𝑃𝑃deviation =
1

𝑃𝑃𝑃𝑃ref
⎣
⎢
⎢
⎢
⎡�(𝑃𝑃𝑃𝑃)

𝛾𝛾−1
𝛾𝛾 − 1�

SEGR
𝛾𝛾SEGR − 1
𝛾𝛾air − 1

+ 1 

⎦
⎥
⎥
⎥
⎤
𝛾𝛾air (𝛾𝛾air−1)⁄

       [6] 

 

2.2.1.2 Steam cycle design for SEGR 

The temperature of the superheated steam entering the high pressure (HP) and intermediate pressure 

(IP) steam turbines is maintained at 600 ºC, which is the design value for advance steam turbines, e.g. 

the Siemens SST-6000 (Siemens Power Generation, 2016) GE ST-600 Series Reheat (General Electric 

Thermal Power Generation, 2016). The approach temperatures, which is defined as the temperature 

difference between HP superheated and reheated steam and flue gas entering the HP superheater and the 

reheater respectively, varies for each configuration depending on the GT exhaust temperature. Since the 

flue gas temperature does not exceed 780 ºC, the same materials are used for all the configurations 

(Martelli, Nord and Bolland, 2012).  

The inlet pressures to the HP and the IP steam turbines are maintained at 170 bar and 40 bar respectively. 

The pressure levels in the HRSG are defined to overcome the pressure drop through the steam ducts and 

feed water pumps discharge pressure are set in accordance. The pressure in the IP-LP crossover and the 

pressure in the LP drum are selected according to the steam requirements in the reboiler of the PCC 

plant. The LP steam turbine capacity is set for the remaining steam mass flow rate downstream of the 

steam extraction point.  

The steam turbines have been modelled in terms of the isentropic efficiencies of the HP, IP and LP 

cylinders, evaluated to match the operational conditions reported in the IEAGHG R&D Programme 

report (IEAGHG 2012). 

2.2.2 PCC optimisation for SEGR 

A new-build steam cycle with dedicated steam extraction for the PCC system is considered in each 

configuration, with the same thermal integration between the capture plant and the power plant. The 

steam turbines are sized for steam extraction at nominal conditions at the design efficiency.  
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The capture plant is optimised for the operating conditions, i.e. flue gas CO2 concentration and flow 

rate, in each configuration. Operating and design parameters are evaluated following the procedure 

described by Freguia and Rochelle (2003) to achieve a post-combustion CO2 capture (PCC) efficiency 

in the absorber that is required to achieve a 90% overall CO2 capture level. The overall CO2 capture 

level takes into account the amount of CO2 exiting the boundaries of the plant, and it is defined as the 

amount of CO2 captured for transport and storage/utilization relative to the amount of CO2 generated in 

the combustion of the natural gas, as indicated in Equation [7]. The PCC efficiency refers to the amount 

of CO2 removed from the flue gas in the capture plant relative to the total amount of CO2 in the flue gas 

entering the plant, as indicated in Equation [8]. 

Overall CO2capture level =
|mol CO2| to compression train

|mol CO2| generated in NG combustion
 [7] 

PCC efficiency = 1 −
|mol CO2|  PCC plant outlet

|mol CO2| PCC plant inlet
 [8] 

For each configuration, the absorber diameter is determined for a flue gas velocity that corresponds to 

80% of the velocity at the flood-point (Oexmann, Hensel and Kather, 2008). The absorber packing 

height is then increased for a constant diameter up to a value at which a further increase results in a 

marginal gain in the rich solvent CO2 loading (< 0.2% of the previous value) and in a marginal reduction 

of the reboiler duty. The lean solvent loading and flow rate are then evaluated to minimise the specific 

reboiler duty. The conditions in the stripper are set to achieve the lean solvent loading resulting in the 

required PCC efficiency for each configuration. The optimisation procedure is illustrated in Appendix 

B for each configuration.  

The benefits of SEGR on the PCC system are evaluated in terms of the reduction in both the packing 

volume of the absorber column and the specific reboiler duty, compared to the reference configuration 

of a CCGT plant with PCC and to a CCGT plant with PCC and “non-selective” EGR at 35% 

recirculation ratio.  

 

 

 

 

 

 

 



17 
 

3. Results  

Results from the process model simulations for the investigated configurations with SEGR in parallel 

and SEGR in series are presented in this sections and compared with the results for an air-based CCGT 

with PCC and a CCGT plant with EGR and PCC operating at 35% recirculation ratio. 

3.1 Selective Exhaust Gas Recirculation in Parallel 

The process flow diagram for a CCGT power plant with SEGR in parallel to the PCC system is 

illustrated in Figure 1. A fraction of the exhaust flue gas leaving the HRSG is diverted and sent to a 

system where CO2 is selectively transferred into an ambient air stream entering the GT compressor. A 

CO2-enriched air is used for natural gas combustion. The non-diverted flue gas stream is treated in the 

PCC plant. 

3.1.1 Operating framework  

For an 90% overall CO2 capture level, assumed for all the configurations, the CO2 concentration that 

can be achieved in the GT exhaust flue gas is determined by the selective exhaust flue gas recirculation 

(SEGR) ratio, the post-combustion CO2 capture (PCC) efficiency and the selective CO2 transfer (SCT) 

efficiency. The SEGR ratio is defined as the flow rate of the diverted flue gas to the CTS over the total 

flue gas flow rate exiting the gas turbine, before cooling and condensation of the excess of humidity.  

The CO2 concentration increases for higher SEGR ratios and, for a wide range of recirculation ratios, 

the oxygen in the combustor remains above the limiting value of 17 vol% reported for GE Class F  gas 

turbine engines with EGR (ElKady et al., 2009; Evulet et al., 2009), which is illustrated in Figure 4b. 

Figure 4a shows the PCC efficiency that is required to capture 90% of the CO2 generated in the 

combustion as a function of the SEGR ratio for a range of SCT efficiencies. For a given SCT efficiency, 

the PCC efficiency increases at a higher recirculation ratio. The reason is that the absolute amount of 

CO2 emitted in the CO2-depleted gas stream leaving the SCT system increases with increasing the 

recirculation ratio, since the flue gas CO2 concentration is higher. A larger amount of CO2 has therefore 

to be captured in the PCC plant. The SEGR ratio and the CO2 concentration achievable in the flue gas 

are therefore limited by the highest efficiency that can be achieved, in practice, with each technology.  

The white areas in Figure 4 indicate that a higher SCT efficiency than 85% in combination with a SEGR 

ratio above 40% are required to increase the flue gas CO2 concentration beyond 6.6 vol%, achievable 

with EGR at 35% recirculation ratio. 

The effect of SEGR in parallel on the CCGT power plant performance and the CO2 capture process is 

investigated here for one configuration defined by the following operating parameters: 
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• SEGR in parallel (Parallel 97/96) operating at 70% SEGR ratio with 97% SCT efficiency and 

96% PCC efficiency This configuration leads to approximately 14 vol% CO2 in the flue gas, 

similar to CO2 concentrations in flue gases from coal-fired power plants. Point A in Figure 4. 

 

 

 
Figure 4.- (a) Sensitivity of the post-combustion CO2 capture efficiency and (b) Sensitivity of CO2 concentration 

in the flue gas at the inlet of the post-combustion capture system and O2 concentration in the CO2-enriched 
combustion air to the selective exhaust gas recirculation ratio, for a range of selective CO2 transfer (SCT) 

efficiencies. SEGR in parallel for 90% overall CO2 capture level.  
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3.1.2 Effect on the CCGT power plant  

3.1.2.1 Effect on the gas turbine system 

The mass flow rate swallowed by the compressor increases compared to the reference configuration for 

a CO2 concentration in the CO2-enriched air higher than 5 vol%, which is possible for SEGR ratios 

higher than 55%. The overall effect is an increase of the fluid density due to the high CO2 content despite 

the temperature rise.  

The working fluid properties which appear in the fundamental equations describing the turbomachinery 

performance, as explained in Section 2.2.1, are evaluated at the compressor inlet, the turbine inlet and 

the turbine outlet. For a higher CO2 concentration in the working fluid, the molar mass and the density 

increase and the ratio of specific heats decreases. The deviation from the reference case is approximately 

7%, 3.7% and 1.5%, respectively, at the compressor inlet for SEGR in parallel at 70% recirculation 

ratio. The increase in the mass flow rate does not significantly affect the pressure ratio in the compressor 

for a constant turbine swallowing capacity at choke conditions, according to Equation [3]. 

The dimensionless parameter groups for mass flow rate, pressure ratio and rotational speed described in 

Section 2.2.1, are then evaluated for the new working fluid composition and operating conditions with 

SEGR. The relative values referred to the design point are shown in Figure 5. The deviations are smaller 

than 3%, and it suggests that a high CO2 concentration in the working fluid results in a small deviation 

in the compressor and the turbine performance from the design conditions. An improvement in the 

compressor efficiency is also expected. 

The increase in the ratio of specific heats, with the increase in the CO2 concentration, results in a 

decrease in the compressor outlet temperature and in an increase in the GT exhaust temperature. In the 

compressor, the increase in the CO2-enriched air inlet temperature counteracts the previous effect and 

the reduction of the compressor outlet temperature is attenuated. The exhaust flue gas temperature 

entering the HRSG increases from 643 ºC, with air-based combustion, to 669 ºC, and the mass flow rate 

also increases from 658 kg/s to 674 kg/s, as shown in Figure 6. The overall effect is an increase of the 

heat available in bottoming cycle. 

The higher mass flow rate through the turbomachinery results in an increase of the gas turbine net power 

output, e.g. by approximately 2 MW with SEGR in parallel 97/96, i.e. with 97% SCT efficiency and 

96% PCC efficiency at 70% recirculation ratio, compared to the reference configuration. The CO2-

enriched air temperature at the compressor inlet of approximately 24 ºC.  A higher power output could 

be achieved if the CO2-enriched air entered the compressor at a lower temperature. 

 



20 
 

 
Figure 5.- Dimensionless parameter groups constituting the compressor performance curve for a range of SEGR 

ratios from 30% to 70%. Normalised values for the design operating point with air combustion at ISO 
conditions. The compressor efficiency is indicated at each recirculation ratio. Configuration: CCGT with PCC 

and SEGR in parallel. 

 
Figure 6.- Sensitivity of the gas turbine exhaust gas mass flow rate and temperature to the flue gas CO2 

concentration, for a range of SEGR ratios from 0 to 80%, increments of 10%. Configuration: CCGT with PCC 
and SEGR in parallel. 
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3.1.2.2 Effect on the steam cycle  

The higher temperature and larger mass flow rate of exhaust gases results in a larger amount of heat 

available in the HRSG. The net power output of the steam turbines train increases by approximately 34 

MW, from 256 to 290 MW, compared to the reference configuration. For further information, the 

temperature versus heat transfer flow rate diagram is included in Appendix C, for a configuration with 

SEGR in parallel 97/96. The temperatures at the high and intermediate pressure steam turbines are 

limited to 600 ºC and, thus, the approach temperatures increase by approximately 28 ºC, compared to 

the reference configuration. Yet the Rankine efficiency increases by approximately 3 %points, from 

64% to 67%.   

3.1.3 Effect on the PCC system   

The effect on the CO2 capture process is investigated for SEGR in parallel 97/96, i.e. operating at 70% 

recirculation ratio, 97% SCT efficiency and 96% PCC efficiency for 90% overall CO2 capture level. A 

flue gas flow rate of 200 kg/s with 14 vol% CO2 is treated in the absorber, which corresponds to 30% 

of the GT exhaust flow rate. This results in a considerably reduction of the absorber diameter. One 

column of 12 m diameter is required in SEGR in parallel, compared to two columns of 12 m in air-based 

combustion, for the same design criteria.   

A 14 vol% CO2 concentration, compared to 4.3 vol% and 6.6 vol% for air-based combustion and 35% 

EGR respectively, results in a larger driving force for CO2 transfer. The equilibrium is displaced towards 

a higher CO2 loading in the rich solvent, increasing the solvent capacity. The rich solvent CO2 loading 

reaches a value of 0.475 molCO2/molMEA compared to 0.458 and 0.466 molCO2/molMEA for air-based 

combustion and 35% EGR, respectively. The lean solvent CO2 loading that minimises the reboiler duty 

is 0.25 molCO2/ molMEA, compared to 0.26 molCO2/ molMEA for both air-based combustion and 35% EGR 

configurations. It results in an increase of the solvent capacity to 0.225 molCO2 / molMEA from 0.207 and 

0.198 molCO2 / molMEA for air-based combustion and 35% EGR, respectively.  

The relatively high CO2 absorption efficiency of 97% results in a relatively small CO2 partial pressure 

of 0.52 kPa at the top of the absorber column and, thus, a smaller driving force for CO2 transfer, 

compared to 35% EGR where the CO2 partial pressure is 0.67 kPa. This explains the small reduction of 

the absorber packing volume of approximately 4% compared to 35% EGR, from 2500 m3 to 2262 m3. 

A significant reduction of the absorber packing volume of 45% is, however, found when SEGR in 

parallel is compared to air-based combustion. The absorber sizing procedure is illustrated in Appendix 

B. 

The relatively small CO2 partial pressure at the top of the absorber requires a lower CO2 loading of the 

lean solvent, which explains the small reduction in the reboiler duty despite the enhanced solvent 
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capacity. The reboiler duty is around 3.56 MJ/kgCO2 comparing to 3.64 and 3.75 MJ/kgCO2 for air-based 

combustion and 35% EGR respectively, which corresponds to 2% and 5% reductions. 

The absorber sizing procedure is illustrated in Appendix D Figure D.1 and Figure D.2, for SEGR in 

parallel and SEGR in series respectively. The reduction in the packing volume is indicated by the black 

dotted line, following the criterion of minimising both the reboiler duty and the absorber dimensions. 

Yet the red dotted line shows the reduction in the absorber packing volume if the design is capitalised 

on the basis of lower capital cost.   
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3.2 Selective Exhaust Gas Recirculation in Series 

The process flow diagram for a CCGT power plant with SEGR in series to the PCC system is illustrated 

in Figure 2. The SCT system is located downstream of, and “in series” with, the PCC process. The 

exhaust flue gas leaving the HRSG is first treated in the PCC system where the CO2 is partially removed. 

The flue gas still contains a relatively high CO2 concentration and is then sent to the SCT system where 

CO2 is transferred into the ambient air stream. 

3.2.1 Operating framework  

The CO2 concentration that can be achieved in the GT exhaust flue gas is determined by the PCC 

efficiency and the SCT efficiency, for a 90% overall CO2 capture level. The CO2 concentration in the 

flue gas increases at a higher SCT and the oxygen level in the combustor remains above 17 vol% for a 

wide range of values, as illustrated in Figure 7b. The CO2 concentration at the inlet of the SCT system 

is lower than at the inlet of the PCC system since the CO2 is partially removed in the latter process.  

Figure 7a shows the PCC efficiency required to achieve a 90% overall CO2 capture level as a function 

of the SCT efficiency. The higher the amount of CO2 transferred into the combustion air, the lower the 

efficiency required in the PCC plant.  

Figure 7 indicates that a higher selective CO2 transfer efficiency than 85% is required to further increase 

the exhaust flue gas CO2 concentration above 6.6 vol%, which is the concentration achievable with EGR 

at 35% recirculation ratio. The required PCC efficiency is then lower than 58%. 

The effect of SEGR in series on the CCGT power plant performance and the CO2 capture process is 

investigated here for three configurations defined by the following operating parameters:  

• SEGR in series (Series 85/58) operating with 85% SCT efficiency and 58% PCC efficiency. The 

flue gas CO2 concentration is approximately 6 vol%, similar to the concentration achieved with 

EGR at 35% recirculation ratio. Point B in Figure 7. 

• SEGR in series (Series 90/48) operating with 90% SCT efficiency and 48% PCC efficiency. The 

flue gas CO2 concentration is approximately 8 vol%. Point C in Figure 7. 

• SEGR in series (Series 95/31) operating with 95% SCT efficiency and 31% PCC efficiency. The 

flue gas CO2 concentration is approximately 13 vol%, similar to the concentration in a flue gas 

from coal-fired power plants. Point D in Figure 7. 
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Figure 7.- (a) Sensitivity of the post-combustion CO2 capture efficiency and (b) Sensitivity of CO2 
concentration, at the inlet of both the post-combustion capture system and the selective CO2 transfer system, and 

O2 concentration in the CO2-enriched combustion air to the selective CO2 transfer efficiency. Configuration 
SEGR in series at 90% overall CO2 capture level. 
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3.2.2 Effect on the CCGT power plant  

3.2.2.1 Effect on the gas turbine system 

The mass flow rate swallowed by the compressor decreases compared to the reference configuration for 

the investigated configurations due to the higher compressor inlet temperature, which is detrimental for 

the gas turbine performance. A slightly higher temperature is expected with SEGR in series compared 

to SEGR in parallel, due to the smaller ratio of air to flue gas flow rate in the SCT system with SEGR 

in series and, thus, the likely larger sensible heat transfer rate, since the total amount of flue gases passes 

through the system. For SEGR in series 95/31, i.e. operating at 95% SCT efficiency and 31% PCC 

efficiency, the CO2-enriched air enters the compressor at 28 ºC and the gas turbine power output 

decreases in approximately 4 MW, compared to the reference case.   

The higher temperature at the compressor inlet results therefore in a smaller working fluid density than 

with SEGR in parallel for the same CO2 concentration in the working fluid. The deviation from the 

reference case of the molar mass, the density and the ratio of specific heat capacities at the compressor 

inlet is approximately, 4.5%, 0.1% and 1% respectively for SEGR in series 95/31. 

The relative values of the dimensionless parameter groups for mass flow rate, pressure ratio and 

rotational speed referred to the design point are represented in Figure 8. They are close to one and this 

suggests that a higher CO2 concentration in the working fluid results in a small deviation for the 

compressor and turbine performance from the design conditions. An improvement in the compressor 

efficiency is also expected. 

The increase in the ratio of specific heat capacities with increasing CO2 concentration results in a 

decrease in the compressor outlet temperature and an increase in the turbine outlet temperature. The 

exhaust flue gas temperature entering the HRSG increases from the reference case only for 

configurations with a SCT efficiency higher than 90%, as shown in Figure 9. For those configurations, 

an increase in the heat available in the bottoming cycle is observed.  
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Figure 8.- Dimensionless parameter groups constituting the compressor performance curve for the 
configurations of SEGR in series with 85%, 90% and 95% selective CO2 transfer efficiency. Normalised values 

for the design operating point with air combustion at ISO conditions. Configuration: CCGT with PCC and SEGR 
in series. 

 
Figure 9.- Sensitivity of the gas turbine exhaust gas mass flow rate and temperature to the CO2 concentration in 
the flue gas. Configuration: CCGT with PCC and SEGR in series, for 85%, 90% and 95% selective CO2 transfer 

efficiency. 

  

 

 

0.95

1.00

0.98 1 1.02

PR
 (S

E
G

R
) /

 P
R

 (a
ir

 IS
O

)

Mass flow coefficient  (SEGR) / 
Mass flow coefficient (air ISO)

Air combustion GT, ηCompressor = 0.795 
SEGR series 85/58,  ηCompressor = 0.812
SEGR series 90/48,  ηCompressor = 0.812
SEGR series 95/31,  ηCompressor = 0.813

Increase in Selective 
CO2 transfer efficiency

656

658

660

662

664

666

668

670

672

635

640

645

650

655

660

4 5 6 7 8 9 10 11 12 13 14

T
em

pe
ra

tu
re

 (º
C

)

M
as

s f
lo

w
 (k

g/
s)

CO2 concentration in flue gas (%mol)

GT exhaust flue gas mass flow rate (air-combustion CCGT)
GT exhaust flue gas temperature (air-combustion CCGT)
GT exhaust flue gas mass flow rate (S-EGR series)
GT exhaust flue gas temperature (S-EGR series)

SEGR in series :
85/58      90/48                                      95/31



27 
 

3.2.2.2 Effect on the steam cycle 

The higher exhaust flue gas temperature leads to a larger amount of heat available in the HRSG. The 

steam turbine net power output increases in approximately 30 MW, from 256 MW to 286 MW, 

compared to the reference configuration with PCC.  

The gas and water/steam temperature profile as a function of the heat transfer flow rate is shown in 

Appendix C, for SEGR in series 95/31. The inlet temperatures at the high and intermediate pressure 

steam turbines are limited to 600 ºC and, thus, the approach temperatures increase by approximately 19 

ºC and 32 ºC in the respective heat transfer banks, compared to the reference configuration.  Yet the 

Rankine efficiency increases by approximately 3% points.  

3.2.3 Effect on the PCC system   

For SEGR in series 85/31, the CO2 concentration in the flue gas is 6.6 vol%, similar to the concentration 

for EGR at 35% recirculation ratio. The total amount of flue gas is treated in the PCC system. Yet a 58% 

PCC efficiency is required to achieve a 90% overall CO2 capture level.  

Two absorber columns of 12 m diameter are required. The higher CO2 concentration and the smaller 

CO2 capture efficiency, however, results in a larger driving force throughout the absorber column and 

the packing height significantly decreases compared to air-based combustion. The packing volume is 

reduced by approximately 40%, from 4190 m3 to 2480 m3, compared to air-based combustion.  

The smaller absorber efficiency of 58%, compared to 90% in 35% EGR, leads to a higher driving force 

at the top of the absorber for the same CO2 concentration at the absorber inlet of 6.6 vol%. Two absorbers 

of smaller height are therefore required with SEGR in series and only one higher absorber with 35% 

EGR. It results in a similar packing volume, 2506 m3 for 35% EGR and 2480 m3 for SEGR in series 

85/31.  

The rich solvent CO2 loading increases from 0.458 to 0.469 molCO2/molMEA, compared to air-based 

combustion and it is similar to 35% EGR. The lean solvent CO2 loading that minimises the reboiler duty 

is 0.28 molCO2/ molMEA, compared to 0.26 molCO2/ molMEA for both air-based combustion and 35% EGR. 

It results in a small reduction of the solvent working capacity, from 0.198 and 0.207 to 0.189 molCO2/ 

molMEA. Although a slightly larger solvent flow rate is required due to the increase in the GT exhaust 

flow rate, the higher CO2 loading of the lean solvent leads to a decrease of the specific reboiler duty 

from 3.75 MJ/kgCO2, for air-based combustion, to 3.62 MJ/kgCO2, for SEGR in series, and to a similar 

specific reboiler duty with 35% EGR, 3.64 MJ/kgCO2. 
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The flue gas CO2 concentration can be further increased by operating at a higher SCT efficiency. For 

SEGR in series 95/31, a CO2 concentration of approximately 13 vol% is possible, similar to the CO2 

concentration achieved for SEGR in parallel 97/96, investigated in Section 3.1. 

Compared to air-based combustion, two absorber columns with similar diameters are required, yet the 

packing height significantly decreases for SEGR in series. This results in a reduction of the packing 

volume of approximately 64%, from 4190 to 1530 m3.   

Compared to SEGR in parallel 97/96, the smaller PCC efficiency of 31%, leads to a considerably higher 

driving force, particularly at the top of the absorber. Two short absorber columns are required with 

SEGR in series and only one large with SEGR in parallel. It leads to an approximately 33% reduction 

of the packing volume, from 2262 to 1530 m3.  

The rich solvent CO2 loading of 0.479 molCO2/ molMEA is higher than 0.458 molCO2/ molMEA for air-based 

combustion, and similar to 0.475 molCO2/ molMEA for SEGR in parallel 97/96 The lean solvent CO2 

loading that minimises the reboiler duty is higher, i.e. 0.28 molCO2/ molMEA, compared to 0.26 molCO2/ 

molMEA in air-based combustion and 0.25 molCO2/ molMEA in SEGR in parallel. It results in a similar 

solvent capacity compared to air-based combustion and in a reduction of the solvent capacity compared 

to SEGR in parallel, from 0.225 to 0.199 molCO2/ molMEA. Despite the larger solvent flow rate and higher 

contribution of the specific heat to the reboiler duty, the higher lean solvent CO2 loading results in an 

overall reduction of the specific reboiler duty of approximately 6.6% and 1.9% compared to air-based 

combustion and SEGR in parallel respectively, from 3.64 and 3.56 MJ/kgCO2, respectively, to 3.50  

MJ/kgCO2. 
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4. Comparison of the results for the integrated CCGT plant with PCC 

4.1 Overall effect on the CCGT power plant 

The effect of SEGR on the gas turbine system is investigated for a Class F GT engine. Results indicate 

a small deviation of the compressor and turbine operating point from the design point, i.e. air-based 

combustion with ISO ambient conditions at the GT compressor inlet.  

A high CO2 concentration in the CO2-enriched air stream entering the GT compressor could potentially 

result in an increase of the gas turbine power output due to a higher gas density and, thus, a larger mass 

flow rate entering the compressor for a fixed position of the VIGVs. Yet an increase in the air 

temperature through the SCT system is likely. The overall effect is therefore a small increase or even a 

decrease in the CO2-enriched air density and hence in the intake mass flow rate. Heat transfer phenomena 

involved in the CO2 transfer process are therefore important when evaluating the effect of SEGR on the 

performance of the gas turbine engine. For the investigated configurations that result in a flue gas CO2 

concentration of 13-14 vol%, the gas turbine net power output increases by 2 MW for SEGR in parallel 

97/96 and decreases by 4.5 MW for SEGR in series 95/31, due to the prevailing effect of the high 

temperature in the latter configuration. 

The increase in the GT exhaust temperature for the investigated configurations, assuming operation at 

constant TIT in the GT engine, results in an increase of the heat available in the bottoming cycle and a 

higher steam turbine power output. Moreover, the steam specific consumption in the reboiler of the PCC 

system decreases. The overall effect is an increase in the steam turbines power output of 34 MW for 

SEGR in parallel 97/96 and of 30 MW for SEGR in series 95/31. 

The combined cycle net power output increases by approximately 42 MW for SEGR in parallel 97/96 

and by 18 MW for SEGR in series 95/31. This corresponds to 5.2% and 2.3% of the combined cycle net 

power output in each configuration. The net increase in the combined cycle power output has been 

evaluated considering the energy penalty due to steam extraction for the MEA scrubbing process, 

auxiliary power consumption in the power plant and in the capture plant, and the power consumption 

for CO2 compression. 

The heat input to maintain the TIT in the GT engine at the design value increases as result of the change 

in the thermodynamic properties of the comburent, yet the net thermal efficiency of the combined cycle 

increases in 0.9 %points and 0.5 %points, respectively for each configuration.   

This work has provided information regarding operating conditions to conduct combustion tests (Marsh 

et al., 2016) within the scope of the EPSRC SELECT project (SELECT, 2014). CO2 and O2 

concentrations in the CO2-enriched air and the equivalence ratio in the GT combustor are presented in 

Table 1. Flue gas composition, flow rate and temperature at the GT exhaust for the configurations 

compared here are also presented. Gas turbine and steam turbines power output, combined cycle power 

output and thermal efficiency and auxiliary power consumption for each configuration is presented in 
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Table 2. Relative values, compared to the reference configuration, i.e. air-based combustion CCGT plant 

with PCC, are illustrated in Figure 10. 

 

 Table 1.- Operating conditions and gas stream variables for the investigated configurations 

Configuration:   
Air-based 

combustion 
(reference) 

EGR 
35%  

SEGR 
Parallel 

97/96 

SEGR 
Series 
95/31 

SEGR 
Series 
90/48 

SEGR 
Series 
85/58 

Operating conditions (1) 
Recirculation ratio  % N/A 35 70 N/A N/A N/A 
Post-combustion CO2 
capture efficiency % 90 90 96 31 48 58 

Selective CO2 transfer 
efficiency % 90 90 97 95 90 85 

CO2-enriched air at compressor inlet 
Temperature  ºC 15 20.2 24.5 27.9 27.9 27.9 
Pressure (set point) bar 1.01 1.01 1.01 1.01 1.01 1.01 
Mass flow  kg/s 642 633 653 642 627 622 
CO2 concentration %mol 0.03 2.41 9.96 8.79 4.03 2.52 
O2 concentration %mol 20.74 16.40 18.68 18.92 19.91 20.22 
Equivalence ratio, 𝜙𝜙 (2) mol/mol 0.56 0.72 0.66 0.64 0.59 0.58 
Flue Gas at GT exhaust            
Temperature  ºC 643 649 671 671 661 657 
Pressure (set point) bar 1.04 1.04 1.04 1.04 1.04 1.04 
Mass flow  kg/s 658 643 670 659 643 638 
CO2 concentration %mol 4.34 6.56 14.12 12.83 8.13 6.63 
H2O concentration %mol 9.06 9.91 9.51 9.17 8.93 8.85 
O2 concentration %mol 11.59 7.59 9.01 9.64 10.90 11.31 
Note 1:     
Note 2:   
 

Operating parameters for 90% overall CO2 capture 
The equivalence ratio is defined as the actual fuel to air ratio (FAR) divided by the stoichiometric fuel to air ratio 
for operating conditions in the combustor. 

 

 Table 2.- Power and thermal efficiency of the CCGT plant for the investigated configurations 

    

Air-based 
combustion 
(reference 

case) 

EGR 
35% 

SEGR 
Parallel 

97/96 

SEGR 
Series 
95/31 

SEGR 
Series 
90/48 

SEGR 
Series 
85/58 

Gas turbine net power  x 2 MWe 286 282 288 281 274 271 
Gas turbines net power  MWe 572 563 576 562 547 542 
GT thermal efficiency % 38.18 37.75 37.13 37.09 37.44 37.54 
Steam turbine Power x 1 MWe 256 266 290 286 269 263 
Gross power MWe 827.6 828.9 866.0 848.5 815.9 805.3 
Gross thermal efficiency % 55.50 55.55 55.80 55.96 55.82 55.76 
Air fan x 2 MWe N/A N/A 0.75 1.07 1.13 1.15 
Booster fan x 2 MWe 7.31 4.67 2.06 7.01 7.01 7.00 
Booster fan for exhaust 
gas recycling x 2 MWe N/A 1.28 0.99 N/A N/A N/A 

Pumps in Steam cycle x 1 MWe 7.46 7.77 8.54 8.43 7.88 7.71 
Pumps in PCC x 2 MWe 0.75 0.70 0.69 0.78 0.79 0.79 
DCC pumps x 2 MWe 0.37 0.85 0.88 0.43 0.38 0.37 
Compression work  x 2  MWe 12.91 12.83 13.38 12.96 12.50 12.35 
Net power output MWe 777.4 780.5 819.9 795.6 764.5 754.3 
Net thermal efficiency % 51.94 52.30 52.84 52.47 52.30 52.23 
Heat input MWth 748 746 776 758 731 722 
Fuel LHV kJ/kg 46938 46938 46938 46938 46938 46938 
Fuel input kg/s 15.95 15.90 16.53 16.15 15.57 15.39 
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Figure 10.- CCGT net power output and net thermal efficiency variation with post-combustion carbon capture 
(PCC) and the operational strategies of conventional EGR, selective EGR in parallel and in series, compared to 

the reference case: air-based combustion CCGT with PCC.   

 

4.2 Comparison of the effect on the post-combustion capture system       

SEGR significantly increases the CO2 concentration in the flue gas entering the PCC plant to 

approximately 14 vol%, compared to 6.6 vol% with “non-selective” EGR at 35% recirculation ratio. A 

high CO2 concentration in the gas phase enhances the CO2 absorption rate due to an increase in the 

driving force for mass transfer and the displacement of the thermodynamic equilibrium towards high 

CO2 loadings in the solvent. The effects on the PCC capture system are evaluated in terms of the 

reduction in both the absorber packing volume and the specific reboiler duty for SEGR in parallel and 

SEGR in series, as described in Table 1. Results are compared in Figure 11, considering an air-based 

combustion CCGT plant with PCC as the reference case. Table 3 summarises the design and operating 

parameters for the 30 wt% MEA absorption plant.   

SEGR in parallel additionally results in a reduction of the flow rate of the gas treated in the absorber, 

compared to 35% EGR. Yet a higher PCC efficiency is required to achieve 90% overall CO2 capture 

level with increasing the fraction of the flue gas diverted to the SCT system, for a given SCT efficiency. 

It results in a larger driving force at the bottom of the absorber which becomes significantly smaller 

towards the top of the absorber, as illustrated in Figure 12. Thus, a small CO2 loading in the lean solvent 

-3

-2

-1

0

1

2

3

4

5

-30

-20

-10

0

10

20

30

40

50

EGR S-EGR Parallel
97/96

S-EGR Series
95/32

S-EGR Series
90/48

S-EGR Series
85/58

Ef
fic

ie
nc

y 
 v

ar
ia

ti
on

 (
%

 p
oi

nt
s)

Po
w

er
 v

ar
ia

ti
on

 (
M

W
)

Gas Turbine power (x2)
Steam Turbine power (x1)
CCGT net power (2-in-1)
CCGT thermal input (MWth)
CCGT net thermal efficiency (LHV)

SEGR parallel: Recirculation ratio 70%, post-combustion capture efficiency 96%, selective CO2 transfer eff. 97%.
SEGR series 95/31: post-combustion capture efficiency 31%, and selective CO2 transfer efficiency 95%.
SEGR series 90/48: post-combustion capture efficiency 48%, and selective CO2 transfer efficiency 90%.
SEGR series 85/58: post-combustion capture efficiency 58%, and selective CO2 transfer efficiency 85%.



32 
 

is required. The diameter of the absorber column is significantly smaller, yet a higher packing section 

for absorption is required, compared to air-based combustion and 35% EGR. 

SEGR in parallel 97/96 operating at 70% recirculation ratio leads to a reduction of 46% in packing 

volume and 5% in specific reboiler duty, compared to air-based combustion, and of 10% in packing 

volume and 2% in specific reboiler duty, compared to 35% EGR.   

Figure 12 illustrate the driving force for CO2 transfer at the top of the absorber for all the configurations. 

The CO2 partial pressure in the flue gas and the CO2 partial pressure in equilibrium with the lean solvent 

CO2 loading are presented in Table 4. 

SEGR in series requires a relatively small efficiency in the PCC process to achieve 90% overall CO2 

capture level, which results in a higher driving force through the absorber and particularly at the top, as 

illustrated in Figure 12. Two absorber columns are required with a considerably smaller packing height, 

which results in a smaller packing volume compared to air-based combustion and EGR at 35% 

recirculation ratio.  

SEGR in series 95/31 results in a reduction of 64% in packing volume and 6.6% in specific reboiler duty 

compared to air-based configuration, of 40% in packing volume and 3.9% in specific reboiler duty 

compared to 35% EGR, and of 33% in packing volume and 2% in specific reboiler duty, compared to 

SEGR in parallel 97/96 with a similar CO2 concentration in the flue gas of approximately 13-14 vol%.  

It must be noted that, EGR and SEGR requires a slightly higher thermal input to maintain the TIT in the 

GT at the design value. For 90% overall CO2 capture level, the absolute amount of CO2 removed in the 

PCC system slightly increases as indicated in Table 3.  
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Table 3.- Design and operating parameters of the CO2 capture process based on chemical 
absorption with 30 wt% MEA aqueous solution   

Configuration/ 
Case   

Air-based 
combustion 
(reference 

case) 

EGR 
35%  

SEGR 
Parallel 

97/96 

SEGR 
Series 
95/31 

SEGR 
Series 
90/48 

SEGR 
Series 
85/58 

PCC efficiency % 90 90 96 31 48 58 
Absorber (per GT-HRSG-PCC train)  

Absorber efficiency % 90 90 96 31 48 58 
Flue gas BOTTOM        
Mass flow rate kg/s 658 418 200 659 642 637 
CO2 conc. vol% 4.21 6.65 14.00 12.89 8.15 6.64 
Flue gas TOP        

Mass flow rate kg/s 622 382 161 599 585 581 
CO2 conc. vol% 0.43 0.70 0.59 8.8 4.67 3.08 
Temperature ºC 54 58.4 66 55 55 55 

Lean solvent loading molCO2/ 
molMEA 0.26 0.26 0.25 0.28 0.28 0.28 

Rich solvent loading molCO2/ 
molMEA 0.458 0.466 0.479 0.472 0.469 0.467 

Solvent capacity molCO2/ 
molMEA 0.198 0.207 0.225 0.189 0.192 0.199 

Lean solvent molar 
flow rate mol/s 886 851 808 942 947 969 

Liquid / Gas ratio  kg/kg 1.35 2.05 3.99 1.38 1.42 1.44 
Environmental        
Emissions MEA mg/Nm3 <1.53 <1.53 <2.22 <0.14 <0.14 <0.14 
Structural parameters        
No. Absorbers -- 2 1 1 2 2 2 
Packing diameter m 12 14 12 12 12 12 
Packing height m 19 17 20 11 8 7 
Packing Total Vol. m3 4187 2506 2262 1526 1804 2476 

Stripper               

Stripper pressure bar 1.84 1.84 1.82 1.92 1.89 1.89 
Steam specific 
consumption 

kg/ 
kgCO2 1.71 1.66 1.62 1.59 1.62 1.65 

Specific Reboiler 
Duty  

MJ/ 
kgCO2 3.75 3.64 3.56 3.50 3.58 3.62 

CO2 to pipeline kg/s 76.5 76.89 80.12 78.3 75.53 74.64 

Note: PCC system is optimised for an overall CO2 capture level 90%. The reboiler operates at 133 ºC and 2.95 bar and it 
is designed for a pinch temperature of 13 ºC. 
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Figure 11.- Specific reboiler duty and packing volume reduction for a CCGT plant with Post-combustion 
Carbon Capture for the configurations: 30% exhaust gas recirculation, selective exhaust gas recirculation in 

parallel and in series, compared to the reference case: air-based combustion CCGT with PCC.   

 

Table 4.- CO2 partial pressure and driving forces at the top of the absorber of the PCC 

Configuration/ 
Case   

Air-based 
combustion 
(reference 

case) 

EGR  
35% 

SEGR 
Parallel 

97/96 

SEGR 
Series 
95/31 

SEGR 
Series 
90/48 

SEGR 
Series 
85/58 

P CO2  (Absorber TOP) kPa 0.436 0.719 0.528 8.913 4.467 2.938 
P CO2 equilibrium (1) kPa 0.090 0.135 0.241 0.128 0.122 0.118 
P CO2 – P CO2 equilibrium kPa 0.345 0.585 0.287 8.786 4.345 2.819 

Lean solvent loading molCO2/ 
molMEA 0.26 0.26 0.25 0.28 0.28 0.28 

Note 1: Vapor liquid equilibrium curves fitted from data (Dugas, 2009; Aronu et al., 2011; Oexmann, 2011) 
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Figure 12.- Driving force for CO2 transfer at the top of the absorber. 

 

The operation and capital cost benefits of SEGR on the PCC system have to be balanced against the 

additional costs associated to the CO2 transfer system. The performance analysis and the design of the 

CO2 transfer process are not presented in this work. A detailed techno-economic analysis for a specific 

CO2 transfer technology appears therefore necessary to fully assess the advantages of SEGR over EGR.  

The largest reduction in the absorber packing volume is observed for SEGR in series 95/31. This 

reduction is higher than for SEGR in parallel 97/96 for a similar flue gas CO2 concentration at the inlet 

of the PCC process. It has to be noted that the design and the operation of the SCT system is likely more 

challenging for SEGR in series than for SEGR in parallel, since the CO2 concentration in the flue gas is 

smaller in the former configuration where the CO2 is partially removed upstream of the SCT system. 

CO2 concentrations in the diverted flue gas stream entering the CO2 transfer system are illustrated in 

Figure 7. 

Moreover, with SEGR in parallel at a large PCC efficiency, the temperature of the CO2-depleted gas 

leaving the absorber packing section is relatively high due to the significantly higher ratio of the solvent 

flow rate over the gas flow rate (L/G), compared to air-based combustion, EGR at 35% recirculation 

ratio and SEGR in series. 

The temperature profiles of the liquid and the gas in the absorber column are presented in Figure 13. 

The temperature increases due to the heat of adsorption reaching a maximum, i.e. temperature bulge, 

close to the top of the absorption section. The temperature then decreases due to the cooling effect of 

the lean solvent and the water vaporization. The amount of evaporated water is smaller at higher L/G 

ratios and so is the cooling effect (Kvamsdal, Haugen and Svendsen, 2011). The CO2-depleted gas leaves 

the absorption section at approximately 65 ºC in SEGR in parallel and at approximately 55-60 ºC in the 

other configurations. A higher water wash section is therefore required in SEGR in parallel to cool the 

CO2-depleted gas to 45 ºC and reduce MEA emissions to a similar level. The packing of the water wash 
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section has not been considered in the results reported in Table 3 since less expensive random packing 

can be used. The same effect of the L/G ratio on the temperature profiles is also found in the 

experimental data from the test campaign of the CO2 capture pilot plant at Esbjerg power station, as part 

of the “CO2 Enhanced Separation and Recovery” (CESAR) project, performed to optimise the flow rate 

of the lean solution to the absorber with respect to a minimal reboiler duty (Abu Zahra, 2009; Oexmann, 

2011). From this observation, it can be suggested that intercooling at the top section of the absorber can 

improve the absorber performance for SEGR in parallel by reducing the temperature bulge and thus 

displacing the thermodynamic equilibrium (Zhang et al., 2016).  

It is also important to note that other solvents may benefit more from the increase in the CO2 partial 

pressure achieved with SEGR, for instance, solvents with slower absorption kinetic rates, higher CO2 

absorption capacity and smaller enthalpy of absorption, such as tertiary amines, e.g. 

methyldiethanolamine (MDEA), or hindered amines, e.g. 2-amino-2-methyl-1-propanol (AMP)  

(Ma’mun et al., 2005). A small increase in the rich solvent CO2 loading is observed for 30 wt% MEA 

when the CO2 partial pressure increases from 4 kPa to 14 kPa, indicating that the thermodynamic 

equilibrium is limiting the enhancement effect. A higher CO2 partial pressure would lead to faster 

absorption kinetic rates when it is the limiting factor for CO2 transfer, higher enhancement factors and 

higher mass transfer rates in the liquid boundary layer.  

 

Figure 13.- Temperature profile of the gas phase (continuous and dashed lines) and the liquid phase (dotted 
lines) in the absorber for the configurations with: air-based combustion with 90% CO2 absorption efficiency, 

35% EGR with 90% CO2 absorption efficiency, SEGR in parallel at 70% recirculation ratio and 96% CO2 
absorption efficiency, and for SEGR in at 31%, 48% and 58% CO2 absorption efficiencies. 
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5. Sensitivity analysis to operating parameters in the Selective CO2 Transfer system  

The Selective CO2 Transfer (SCT) system is modelled in previous sections as a “grey box” in which key 

operating parameters, such as CO2 selectivity, leakage levels, thermal flow rate and pressure drop are 

input data. Initial values are the result of a conceptual design assessment using rotary adsorption for 

selective CO2 transfer, which was conducted by Herraiz (2016). The effect of a variation of these 

parameters from design values on flue gas CO2 concentrations and/or power outputs is conducted here 

to provide guidance on the minimum requirements for CO2 transfer technologies. Results are shown 

here for the configuration with SEGR in parallel at 70% recirculation ratio. Similar results were observed 

for SEGR in series. 

5.1 Selectivity to CO2 over other components in the flue gas 

A high CO2 selectivity over other components in the flue gas is desired for SEGR applications. Oxygen 

and water vapour are however likely to be transferred along with CO2, either in a competitive or non-

competitive mechanism, due to the difference in partial pressure between a flue gas entering the system 

saturated in moisture at 30 ºC and the ambient air, i.e. 4.5 vol% H2O compared to 1 vol% and 9.8 vol% 

O2 compared to 21 vol%. 

A sensitivity analysis of the O2 concentration in the comburent and the CO2 concentration in the flue 

gas entering the absorber to the amount of oxygen transfer from air into flue gas (x-axis) and to the 

amount of water vapour transferred from the flue gas into air (parameter), is shown in Figure 14. The 

amount transferred for each component is expressed as a percentage of the inlet flow rate of the 

component flow rate.  

The oxygen concentration in the CO2-enriched air decreases with increasing either the amount of oxygen 

transferred from air into flue gas or the amount of water transferred from flue gas into air, since a larger 

amount of intake air is replaced by the water vapour. The effect of oxygen transfer on the concentration 

is larger, since the oxygen concentration in air is considerably larger. A 10% of the O2 transfer would 

reduce the oxygen concentration by around 1 wt%. The flue gas CO2 concentration increases with 

increasing the amount of water vapor transferred, since the excess of humidity condenses in the direct 

contact cooler upstream of the absorber.  
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Figure 14.- Sensitivity of the flue gas CO2 concentration and the comburent O2 concentration to the O2 transfer 

level from the air into the flue gas, for a range of water vapour transfer levels from the flue gas into the air. 
Configuration: SEGR in parallel with a recirculation ratio of 70%, a selective CO2 transfer efficiency of 97% and 

a post-combustion capture efficiency of 96.7%.   

 

5.2 Heat transfer  

The compressor inlet temperature is a critical parameter in the assessment of the gas turbine performance 

with SEGR and it has a large effect on the power output and exhaust gases flow rate and temperature. 

For the design of the SEGR system, it is therefore important to understand the heat transfer mechanisms 

and heat generation/consumptions. For CO2 adsorption, for example, the CO2-enriched air temperature 

leaving the system results from an energy balance that considers the contribution of the enthalpy for 

CO2 desorption and the sensible heat transfer, as the solid material acts as a heat storage medium in the 

adsorption/desorption cycles. In practice, the technologies proposed for SEGR applications are likely to 

benefit from lower flue gas temperature. It is for instance the case for rotary adsorption proposed in 

Herraiz’s work (2016). The flue gas stream is cooled down to 30 ºC in a direct contact cooler.  

Figure 15 shows the sensitivity of the gas turbine power output and thermal efficiency to the CO2-

enriched air temperature at the compressor inlet. The air temperature increases from 15 ºC (ISO ambient 

conditions) to 16.5 ºC due to the compression in the air fan and a further increase of 8 ºC through the 

SCT system is assumed here. A higher temperature rise results in a larger reduction of the gas turbine 

power output. For an ideal system with no heat transfer/generation, SEGR would increase the gas turbine 

power output by approximately 13 MW, compared to the power output in the reference configuration 

(red dot), due to the higher CO2-concentration and density of the working fluid. It is indicated by the 

green dotted line in Figure 15. 
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Figure 15.- Sensitivity of the gas turbine power output and thermal efficiency to the CO2-enriched air 

temperature at the inlet of the compressor. Configuration: parallel SEGR with a recirculation ratio of 70%, a 
selective transfer efficiency of 97% and a post-combustion capture efficiency of 96.7%. 

5.3 Pressure drop 

An air fan and a booster fan are used to overcome pressure drop in the air and the diverted flue gas 

pathways through the SCT system, as shown in the process flow diagrams in Figure 1 and Figure 2. As 

an alternative, additional stages in a compressor are considered to replace the air fan.   

Figure 16 shows a sensitivity analysis of the gas turbine power output to the pressure drop on the CO2 

transfer system for two configurations: with an air fan and without an air fan. With an air fan, the gas 

turbine power output decreases compared to the reference case due to the temperature rise in the fan, 

yet the power output penalty is smaller than in the configuration without an air fan. Despite the higher 

efficiency of the gas turbine compressor compared to a fan, the temperature is higher at the compressor 

inlet. An increase in the pressure drop of 1 kPa (10 mbar) results in a penalty of approximately 2 MW 

with an air fan and of 4.5 MW without an air fan.  

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

265

270

275

280

285

290

295

300

305

15 20 25 30 35

Th
er

m
al

 e
ffi

ci
en

cy
 v

ar
ia

ti
on

(%
po

in
ts

)

Po
w

er
 (M

W
e)

CO2-enriched air temperature at compressor inlet (ºC)

Gas Turbine power output (air-combustion CCGT)
Gas Turbine power output (S-EGR in parallel)
Gas Turbine thermal efficiency variation (S-EGR in parallel)

SEGR in parallel with T rise 
in SEGR unit of 8 ºC (this work)

SEGR in parallel with no T rise
in SEGR unit (ideally)

Temperature rise due to compression



40 
 

 
Figure 16.- Sensitivity of the gas turbine power output and air fan power consumption to the pressure drop in the 

air side of the selective CO2 transfer device for the configuration in parallel with and without an air fan. 
Configuration: parallel SEGR with a recirculation ratio of 70%, a selective transfer efficiency of 97% and a post-

combustion capture 
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6. Conclusions  

• This work shows that SEGR operated either in parallel or in series with a PCC process significantly 

increase the CO2 concentration in the exhaust flue gas of a CCGT power plant, maintaining oxygen 

levels in the combustor at approximately 19 vol%. The CO2 concentration is limited by the highest 

efficiency that can be achieved in practice with the technologies used for CO2 capture and for 

selective CO2 transfer. 

o A CO2 concentration of 14 vol% is possible at the inlet of the PCC system with SEGR in parallel 

97/96, operating at 70% SEGR ratio with 96% PCC efficiency and 97% SCT efficiency.  

o A CO2 concentration of 13 vol% is possible at the inlet of the PCC system with SEGR in series 

95/31, operating with 95% SCT efficiency and 31% PCC efficiency. 

• The assessment of the performance of a CCGT plant with SEGR leads to the following conclusions:  

o A small deviation on the compressor and the turbine behaviour of a Class F gas turbine engine, 

i.e. GE 9F-class, with SEGR from the design point, i.e. air-based combustion ISO ambient 

conditions, is expected for a range of CO2 concentrations up to 9-10 vol% in the CO2-enriched air 

stream entering the gas turbine compressor. This range is the equivalent to 13-14 vol% CO2 in 

the GT exhaust flue gas.  

o For both configurations, SEGR in parallel and SEGR in series, the GT power output could 

increase by approximately 15 MW, equivalent to 5% of the GT net power output, as result of the 

higher density of a CO2-enriched air compared to ambient air at the same temperature. Yet, a 

likely temperature rise through the selective CO2 transfer system results in a marginal increase in 

the gas turbine power output with SEGR in parallel, or even in a reduction in the power output 

with SEGR in series, for the operating parameters described above.  

o The variation of the thermal and physical properties of the working fluid in the gas turbine is 

considerably small compared to the reference configuration. Yet, the smaller ratio of specific 

heats at high CO2 concentrations leads to a higher GT exhaust temperature and heat available in 

the bottoming cycle. Consequently, the steam turbine power output increases by approximately 

34 MW and 30 MW. 

o The overall effect is an increase of the CCGT net power output by approximately 42 MW and 18 

MW, respectively for SEGR in parallel and SEGR in series operating at the conditions indicated 

above. This corresponds to 5.2% and 2.3% of the CCGT net power output respectively. The net 

thermal efficiency of the combined cycle increases by 0.55 %point and 0.83 %point, despite of 

the fact that the heat input increases by 27 MWth for SEGR in parallel and by 8 MWth for SEGR 

in series in order to maintain the TIT at the design value of 1371 ºC.  
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• Regarding the benefits of SEGR for the PCC system:  

o SEGR in parallel reduces the flow rate of the flue gas stream entering the absorber in the PCC 

plant, e.g. by 70% at 70% recirculation ratio, in addition to increasing the CO2 concentration. 

The PCC efficiency, required to achieve 90% overall CO2 capture level, increases with 

increasing the fraction of the flue gas diverted to the selective CO2 transfer system, for a given 

SCT efficiency. The absorber diameter is smaller. Yet a higher packing section for absorption 

is necessary compared to air-based combustion and 35% EGR.  

o SEGR in series requires a considerably lower PCC efficiency than 90% to achieve a 90% overall 

CO2 capture level. The total amount of GT exhaust gases is treated and similar absorber diameter 

as in air-based combustion is required. Yet the height of the absorption packing section is 

considerably smaller compared to both air-based combustion and 35% EGR. 

This work evaluates quantitatively the effect of SEGR on the PCC process in terms of reduction in 

packing volume and in specific reboiler duty for the configurations that results in 13-14 vol% CO2 

concentration in the GT exhaust gases: 

o SEGR in parallel 97/96 results in a reduction of 46% in packing volume and 5% in specific 

reboiler duty, compared to air-based combustion, and of 10% in packing volume and 2% in 

specific reboiler duty, compared to 35% EGR.  

o SEGR in series 95/31 results in a reduction of 64% in packing volume and 6.6% in specific 

reboiler duty, compared to air-based configuration, of 40% in packing volume and 3.9% in 

specific reboiler duty compared to 35% EGR, and of 33% in packing volume and 2% in specific 

reboiler duty, compared to SEGR in parallel 97/96 for a similar flue gas CO2 concentration of 

approximately 13-14 vol%.  

• A better performance of the CCGT plant is found with SEGR in parallel 97/96, since this 

configuration results in a higher power output and thermal efficiency, compared to SEGR in series 

95/31. Yet the latter configuration results in a higher reduction in absorber size. The selection of 

either SEGR in parallel or SEGR in series however depends on the technology used for selective 

CO2 transfer. An optimisation produce should be focused on minimising cost of the overall system 

and, it should therefore include a detailed design of the SCT system. 

• On selecting a technology for SEGR applications, the pressure drop and the heat transfer rate have a 

large effect on the GT power output and the power plant performance. It is therefore important to 

minimise the pressure drop, the temperature increase at the GT compressor inlet and the oxygen 

leakage levels to avoid gas turbine derating. It is found that a 1kPa pressure drop or a temperature 

rise of 1.5 ºC results in approximately 2MW decrease in the GT power output.  
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Nomenclature   

Acronyms 

CAPEX Capital expenditures  

CCC Committee on Climate Change  

CCGT Combined cycle gas turbine  

CCS Carbon capture and storage  

COT Combustor outlet temperature  

DCC Direct contact cooler   

FAR Fuel to air ratio  

GT Gas Turbine  

HHV Higher heating value  

HP High pressure  

HRSG Heat recovery steam generator  

IP Intermediate pressure  

LHV Lower heating value  

LP Low pressure  

MEA Monoethanolamine  

NGCC Natural gas combined cycle  

OPEX Operational expenditures  

PC Pulverized coal  

PCC Post-combustion CO2 capture  

SCT Selective CO2 transfer   

SEGR Selective exhaust gas recirculation  

TIT Turbine inlet temperature  

UHC Unburned hydrocarbons  

   

Symbols 

𝐴𝐴 Cross section (m2)  

𝐶𝐶𝜃𝜃 Tangential component of the gas absolute velocity (m/s)  

𝐾𝐾𝑇𝑇 Turbine swallowing capacity  

𝑁𝑁 Rotor angular speed (rpm)   

𝑚̇𝑚 Mass flow rate (kg s-1)  

𝑀𝑀𝑀𝑀 Match number   

𝑀𝑀𝑀𝑀 Molar mass (kg mol-1)  



44 
 

𝑃𝑃 Pressure (bar)  

𝑃𝑃𝑃𝑃 Pressure ratio  

𝑅𝑅𝑢𝑢 Universal gas constant (8.314 J mol-1 K-1)  

𝑇𝑇 Temperature (K)  

𝑈𝑈 Rotor linear speed (m s-1)  

𝑦𝑦 Mass fraction (kg kg-1)  

𝑍𝑍 Compressibility factor   

   

Greek letters 

𝛾𝛾 Specific heat ratio, 𝛾𝛾 = 𝐶𝐶𝑝𝑝 𝐶𝐶𝑣𝑣⁄   
𝜙𝜙 Equivalence ratio, 𝜙𝜙 = [𝐹𝐹𝐹𝐹𝐹𝐹 ]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [𝐹𝐹𝐹𝐹𝐹𝐹 ]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖⁄   

Subscripts 

𝑑𝑑𝑑𝑑𝑑𝑑 Design  

𝑟𝑟𝑟𝑟𝑟𝑟 Reference  

𝑔𝑔 Flue gas  

0 Stagnation or total properties  
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