101 research outputs found

    Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The stability of reference genes has a tremendous effect on the results of relative quantification of genes expression by quantitative polymerase chain reaction. Equine Inflammatory Airway Disease (IAD) is a common condition often treated with corticosteroids. The diagnosis of IAD is based on clinical signs and bronchoalveolar lavage (BAL) fluid cytology. The aim of this study was to identify reference genes with the most stable mRNA expression in the BAL cells of horses with IAD irrespective of corticosteroids treatment.</p> <p>Results</p> <p>The expression stability of seven candidate reference genes (B2M, HPRT, GAPDH, ACTB, UBB, RPL32, SDHA) was determined by qRT-PCR in BAL samples taken pre- and post- treatment with dexamethasone and fluticasone propionate for two weeks in 7 horses with IAD. Primers' efficiencies were calculated using LinRegPCR. NormFinder, GeNorm and qBasePlus softwares were used to rank the genes according to their stability. GeNorm was also used to determine both the ideal number and the best combination of reference genes. GAPDH was found to be the most stably expressed gene with the three softwares. GeNorm ranked B2M as the least stable gene. Based on the pair-wise variation cut-off value determined with GeNorm, the number of genes required for optimal normalization was four and included GAPDH, SDHA, HPRT and RPL32.</p> <p>Conclusion</p> <p>The geometric mean of GAPDH, HPRT, SDHA and RPL32 is recommended for accurate normalization of quantitative PCR data in BAL cells of horses with IAD treated with corticosteroids. If only one reference gene can be used, then GAPDH is recommended.</p

    Gene Expression Analysis of the Hepatotoxicant Methapyrilene in Primary Rat Hepatocytes: An Interlaboratory Study

    Get PDF
    Genomics technologies are used in several disciplines, including toxicology. However, these technologies are relatively new, and their applications require further investigations. When investigators apply these technologies to in vitro experiments, two major issues need to be clarified: a) can in vitro toxicity studies, in combination with genomics analyses, be used to predict the toxicity of a compound; and b) are the generated toxicogenomics data reproducible between laboratories? These questions were addressed by an interlaboratory study with laboratories of four pharmaceutical companies. We evaluated gene expression patterns from cultured rat primary hepatocytes after a 24-hr incubation with methapyrilene (MP). Extensive data analysis showed that comparison of genomics data from different sources is complex because both experimental and statistical variability are important confounding factors. However, appropriate statistical tools allowed us to use gene expression profiles to distinguish high-dose–treated cells from vehicle-treated cells. Moreover, we correctly identified MP in an independently generated in vitro database, underlining that in vitro toxicogenomics could be a predictive tool for toxicity. From a mechanistic point of view, despite the observed site-to-site variability, there was good concordance regarding the affected biologic processes. Several subsets of regulated genes were obtained by analyzing the data sets with one method or using different statistical analysis methods. The identified genes are involved in cellular processes that are associated to the exposure of primary hepatocytes to MP. Whether they are specific for MP and are cause or consequence of the toxicity requires further investigations

    Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene.

    Get PDF
    Several studies using microarrays have shown that changes in gene expression provide information about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether gene expression profiles are reproducible across different laboratories remains to be determined. To address this question, several members of the Hepatotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility, and RNA was distributed to five different sites for gene expression analysis. A preliminary evaluation of the number of modulated genes uncovered striking differences between the five different sites. However, additional data analysis demonstrated that these differences had an effect on the absolute gene expression results but not on the outcome of the study. For all users, unsupervised algorithms showed that gene expression allows the distinction of the high dose of MP from controls and low dose. In addition, the use of a supervised analysis method (support vector machines) made it possible to correctly classify samples. In conclusion, the results show that, despite some variability, robust gene expression changes were consistent between sites. In addition, key expression changes related to the mechanism of MP-induced hepatotoxicity were identified. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.</p

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.</p

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe
    corecore