169 research outputs found

    Phenotypic and genetic spectrum of epilepsy with myoclonic atonic seizures

    Get PDF
    Objective We aimed to describe the extent of neurodevelopmental impairments and identify the genetic etiologies in a large cohort of patients with epilepsy with myoclonic atonic seizures (MAE). Methods We deeply phenotyped MAE patients for epilepsy features, intellectual disability, autism spectrum disorder, and attention-deficit/hyperactivity disorder using standardized neuropsychological instruments. We performed exome analysis (whole exome sequencing) filtered on epilepsy and neuropsychiatric gene sets to identify genetic etiologies. Results We analyzed 101 patients with MAE (70% male). The median age of seizure onset was 34 months (range = 6-72 months). The main seizure types were myoclonic atonic or atonic in 100%, generalized tonic-clonic in 72%, myoclonic in 69%, absence in 60%, and tonic seizures in 19% of patients. We observed intellectual disability in 62% of patients, with extremely low adaptive behavioral scores in 69%. In addition, 24% exhibited symptoms of autism and 37% exhibited attention-deficit/hyperactivity symptoms. We discovered pathogenic variants in 12 (14%) of 85 patients, including five previously published patients. These were pathogenic genetic variants in SYNGAP1 (n = 3), KIAA2022 (n = 2), and SLC6A1 (n = 2), as well as KCNA2, SCN2A, STX1B, KCNB1, and MECP2 (n = 1 each). We also identified three new candidate genes, ASH1L, CHD4, and SMARCA2 in one patient each. Significance MAE is associated with significant neurodevelopmental impairment. MAE is genetically heterogeneous, and we identified a pathogenic genetic etiology in 14% of this cohort by exome analysis. These findings suggest that MAE is a manifestation of several etiologies rather than a discrete syndromic entity.Peer reviewe

    Intron Evolution and Information processing in the DNA polymerase Ī± gene in spirotrichous ciliates: A hypothesis for interconversion between DNA and RNA deletion

    Get PDF
    BACKGROUND: The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected. Moreover, comparing subtelomeric regions of 1,356 end-sequenced somatic chromosomes failed to identify more putatively conserved motifs. RESULTS: We sequenced and compared DNA and RNA versions of the DNA polymerase Ī± (pol Ī±) gene from nine diverged spirotrichous ciliates. We identified a G-C rich motif aaTACCGC(G/C/T) upstream from transcription start sites in all nine pol Ī± orthologs. Furthermore, we consistently found likely polyadenylation signals, similar to the eukaryotic consensus AAUAAA, within 35 nt upstream of the polyadenylation sites. Numbers of introns differed among orthologs, suggesting independent gain or loss of some introns during the evolution of this gene. Finally, we discuss the occurrence of short direct repeats flanking some introns in the DNA pol Ī± genes. These introns flanked by direct repeats resemble a class of DNA sequences called internal eliminated sequences (IES) that are deleted from ciliate chromosomes during development. CONCLUSION: Our results suggest that conserved motifs are present at both 5' and 3' untranscribed regions of the DNA pol Ī± genes in nine spirotrichous ciliates. We also show that several independent gains and losses of introns in the DNA pol Ī± genes have occurred in the spirotrichous ciliate lineage. Finally, our statistical results suggest that proven introns might also function in an IES removal pathway. This could strengthen a recent hypothesis that introns evolve into IESs, explaining the scarcity of introns in spirotrichs. Alternatively, the analysis suggests that ciliates might occasionally use intron splicing to correct, at the RNA level, failures in IES excision during developmental DNA elimination. REVIEWERS: This article was reviewed by Dr. Alexei Fedorov (referred by Dr. Manyuan Long), Dr. Martin A. Huynen and Dr. John M. Logsdon

    The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of <it>Mycoplasma agalactiae</it>, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition.</p> <p>Results</p> <p>The selective enrichment for <it>M. agalactiae </it>PG2<sup>T </sup>liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the <it>M. agalactiae </it>liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all <it>M. agalactiae </it>PG2<sup>T </sup>genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events.</p> <p>Conclusions</p> <p>This study led to the in-depth systematic characterization of the <it>M. agalactiae </it>liposoluble protein component, providing useful insights into its membrane organization.</p

    Loss of Num1-mediated cortical dynein anchoring negatively impacts respiratory growth

    Get PDF
    Num1 is a multifunctional protein that both tethers mitochondria to the plasma membrane and anchors dynein to the cell cortex during nuclear inheritance. Previous work has examined the impact loss of Num1-based mitochondrial tethering has on dynein function in Saccharomyces cerevisiae; here, we elucidate its impact on mitochondrial function. We find that like mitochondria, Num1 is regulated by changes in metabolic state, with the protein levels and cortical distribution of Num1 differing between fermentative and respiratory growth conditions. In cells lacking Num1, we observe a reproducible respiratory growth defect, suggesting a role for Num1 in not only maintaining mitochondrial morphology, but also function. A structureā€“function approach revealed that, unexpectedly, Num1- mediated cortical dynein anchoring is important for normal growth under respiratory conditions. The severe respiratory growth defect in Ī”num1 cells is not specifically due to the canonical functions of dynein in nuclear migration but is dependent on the presence of dynein, as deletion of DYN1 in Ī”num1 cells partially rescues respiratory growth. We hypothesize that misregulated dynein present in cells that lack Num1 negatively impacts mitochondrial function resulting in defects in respiratory growth

    <i>Mycoplasma agalactiae</i> MAG_5040 is a Mg<sup>2+</sup>-dependent, sugar-nonspecific SNase recognised by the host humoral response during natural infection

    Get PDF
    In this study the enzymatic activity of Mycoplasma agalactiae MAG_5040, a magnesium-dependent nuclease homologue to the staphylococcal SNase was characterized and its antigenicity during natural infections was established. A UGA corrected version of MAG_5040, lacking the region encoding the signal peptide, was expressed in Escherichia coli as a GST fusion protein. Recombinant GST-MAG_5040 exhibits nuclease activity similar to typical sugar-nonspecific endo- and exonucleases, with DNA as the preferred substrate and optimal activity in the presence of 20 mM MgCl2 at temperatures ranging from 37 to 45uC. According to in silico analyses, the position of the gene encoding MAG_5040 is consistently located upstream an ABC transporter, in most sequenced mycoplasmas belonging to the Mycoplasma hominis group. In M. agalactiae, MAG_5040 is transcribed in a polycistronic RNA together with the ABC transporter components and with MAG_5030, which is predicted to be a sugar solute binding protein by 3D modeling and homology search. In a natural model of sheep and goats infection, anti-MAG_5040 antibodies were detected up to 9 months post infection. Taking into account its enzymatic activity, MAG_5040 could play a key role in Mycoplasma agalactiae survival into the host, contributing to host pathogenicity. The identification of MAG_5040 opens new perspectives for the development of suitable tools for the control of contagious agalactia in small ruminants

    The Liposoluble proteome of <i>Mycoplasma agalactiae</i>: an insight into the minimal protein complement of a bacterial membrane

    Get PDF
    Background Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition. Results The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events. Conclusions This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization

    CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment

    Get PDF
    Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 Ɨ 10āˆ’7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 Ɨ 10āˆ’5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition
    • ā€¦
    corecore