14 research outputs found

    Characterization and Genomic Localization of a SMAD4 Processed Pseudogene

    Get PDF
    Like many clinical diagnostic laboratories, we undertake routine investigation of cancer-predisposed individuals by high-throughput sequencing of patient DNA that has been target-enriched for genes associated with hereditary cancer. Accurate diagnosis using such reagents requires alertness against rare nonpathogenic variants that may interfere with variant calling. In a cohort of 2042 such cases, we identified five that initially appeared to be carriers of a 95-bp deletion of SMAD4 intron 6. More detailed analysis indicated that these individuals all carried one copy of a SMAD4 processed gene. Because of its interference with diagnostic analysis, we characterized this processed gene in detail. Whole genome sequencing and confirmatory Sanger sequencing of junction PCR products were used to show that in each of the five cases, the SMAD4 processed gene was integrated at the same position on chromosome 9, located within the last intron of the SCAI gene. This rare polymorphic processed gene therefore reflects the occurrence of a single ancestral retrotransposition event. Compared to the reference SMAD4 mRNA sequence NM_005359.5 (https://www.ncbi.nlm.nih.gov/nucleotide/), the 5′ and 3′ UTR regions of the processed gene are both truncated, but its open reading frame is unaltered. Our experience leads us to advocate the use of an RNA-seq aligner, as part of diagnostic assay quality assurance, since this allows their recognition in a comparatively facile automated fashion

    Enhanced diagnostic yield in Meckel-Gruber and Joubert syndrome through exome sequencing supplemented with split-read mapping

    Get PDF
    Background The widespread adoption of high-throughput sequencing technologies by genetic diagnostic laboratories has enabled significant expansion of their testing portfolios. Rare autosomal recessive conditions have been a particular focus of many new services. Here we report a cohort of 26 patients referred for genetic analysis of Joubert (JBTS) and Meckel-Gruber (MKS) syndromes, two clinically and genetically heterogeneous neurodevelopmental conditions that define a phenotypic spectrum, with MKS at the severe end. Methods Exome sequencing was performed for all cases, using Agilent SureSelect v5 reagents and Illumina paired-end sequencing. For two cases medium-coverage (9×) whole genome sequencing was subsequently undertaken. Results Using a standard analysis pipeline for the detection of single nucleotide and small insertion or deletion variants, molecular diagnoses were confirmed in 12 cases (4 %). Seeking to determine whether our cohort harboured pathogenic copy number variants (CNV), in JBTS- or MKS-associated genes, targeted comparative read-depth analysis was performed using FishingCNV. These analyses identified a putative intragenic AHI1 deletion that included three exons spanning at least 3.4 kb and an intergenic MPP4 to TMEM237 deletion that included exons spanning at least 21.5 kb. Whole genome sequencing enabled confirmation of the deletion-containing alleles and precise characterisation of the mutation breakpoints at nucleotide resolution. These data were validated following development of PCR-based assays that could be subsequently used for “cascade” screening and/or prenatal diagnosis. Conclusions Our investigations expand the AHI1 and TMEM237 mutation spectrum and highlight the importance of performing CNV screening of disease-associated genes. We demonstrate a robust increasingly cost-effective CNV detection workflow that is applicable to all MKS/JBTS referrals

    An alternative to array-based diagnostics: a prospectively recruited cohort, comparing arrayCGH to next-generation sequencing to evaluate foetal structural abnormalities

    No full text
    Molecular diagnostic investigations, following the identification of foetal abnormalities, are routinely performed using array comparative genomic hybridisation (aCGH). Despite the utility of this technique, contemporary approaches for the detection of copy number variation are typically based on next-generation sequencing (NGS). We sought to compare an in-house NGS-based workflow (CNVseq) with aCGH, for invasively obtained foetal samples from pregnancies complicated by foetal structural abnormality. DNA from 40 foetuses was screened using both 8 × 60 K aCGH oligoarrays and low-coverage whole genome sequencing. Sequencer-compatible libraries were combined in a ten–sample multiplex and sequenced using an Illumina HiSeq2500. The mean resolution of CNVseq was 29 kb, compared to 60 kb for aCGH analyses. Four clinically significant, concordant, copy number imbalances were detected using both techniques, however, genomic breakpoints were more precisely defined by CNVseq. This data indicates CNVseq is a robust and sensitive alternative to aCGH, for the prenatal investigation of foetuses with structural abnormalities.Impact statement What is already known about this subject? Copy number variant analysis using next-generation sequencing has been successfully applied to investigations of tumour specimens and patients with developmental delays. The application of our approach, to a prospective prenatal diagnosis cohort, has not hitherto been assessed. What do the results of this study add? Next-generation sequencing has a comparable turnaround time and assay sensitivity to copy number variant analysis performed using array CGH. We demonstrate that having established a next-generation sequencing facility, high-throughput CNVseq sample processing and analysis can be undertaken within the framework of a regional diagnostic service. What are the implications of these findings for clinical practice and/or further research? Array CGH is a legacy technology which is likely to be superseded by low-coverage whole genome sequencing, for the detection of copy number variants, in the prenatal diagnosis of structural abnormalitie

    Identification of a mutation in the ubiquitin-fold modifier 1-specific peptidase 2 gene, UFSP2, in an extended South African family with Beukes hip dysplasia.

    Get PDF
    Background. Beukes hip dysplasia (BHD) is an autosomal dominant disorder of variable penetrance that was originally identified in a large South African family of European origin. BHD is characterised by bilateral dysmorphism of the proximal femur, which results in severe degenerative osteoarthropathy. Previous studies mapped the disorder to a 3.34 Mb region on chromosome 4q35.Objective. To fine-map the BHD locus and identify the disease-causing mutation by direct sequencing.Results. The linked BHD allele was refined to 1.33 Mb, reducing the number of candidate genes from 25 to 16. Analysis of protein coding and invariant splice-site sequences in three distantly related individuals identified a single-candidate disease-causing variant c.868T>C within exon 8 of the ubiquitin-fold modifier 1 (Ufm1)-specific peptidase 2 gene, UFSP2. The presence of this unique mutation was confirmed in all 17 affected members of the BHD family who were genotyped. The mutation segregated with the BHD phenotype in the extended family with a two-point (single marker) LOD score of 10.4 (θ = 0.0 and 80% penetrance). The mutation predicts the substitution of a highly conserved amino acid, p.Tyr290His, in the encoded protein. In vitro functional assays performed using purified recombinant wild-type and mutant UFSP2 protein demonstrated that the BHD mutation abolishes UFSP2-mediated C-terminal cleavage of its substrate, Ufm1.Conclusion. We report a unique UFSP2 mutation that segregates with the BHD phenotype. The predicted amino acid substitution inactivates UFSP2 proteolytic function, thus implicating the ubiquitin-fold modifier 1 cascade in this form of severe hip osteoarthropathy. The facile polymerase chain reaction-based assay we describe could be used to confirm the diagnosis of BHD, or for presymptomatic testing of members of the extended BHD family

    Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    No full text
    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure

    Chromosome 7 ideogram and breakpoint confirmation.

    No full text
    <p><b>(A)</b> Arrows showing the breakpoint locations. Greek letters facilitate interpretation of the resulting pericentric inversion. Sanger sequencing results for the normal and breakpoint spanning amplicons for <b>(B)</b> the 7p15 and <b>(C)</b> the 7q21 inversion boundaries. The vertical dashed read line highlights the breakpoint. For ease of comparison a dashed black line has been drawn onto the normal sequence. (+): sense strand sequence; (-): antisense strand sequence. The inversion has resulted in an AT dinucleotide duplication which is shown arbitrarily assigned to the 7p15 breakpoint.</p

    A distinctive oral phenotype points to FAM20A mutations not identified by Sanger sequencing

    Get PDF
    Biallelic FAM20A mutations cause two conditions where Amelogenesis Imperfecta (AI) is the presenting feature: Amelogenesis Imperfecta and Gingival Fibromatosis Syndrome; and Enamel Renal Syndrome. A distinctive oral phenotype is shared in both conditions. On Sanger sequencing of FAM20A in cases with that phenotype, we identified two probands with single, likely pathogenic heterozygous mutations. Given the recessive inheritance pattern seen inall previous FAM20A mutation-positive families and the potential for renal disease, further screening was carried out to look for a second pathogenic allele. Reverse transcriptase-PCR on cDNA was used to determine transcript levels. CNVseq was used to screen for genomic insertions and deletions. In one family, FAM20AcDNA screening revealed only a single mutated FAM20A allele with the wild-type allele not transcribed. In the second family, CNV detection by whole genome sequencing (CNVseq) revealed a heterozygous 54.7 kb duplication encompassing exons 1 to 4 of FAM20A. This study confirms the link between biallelic FAM20A mutations and the characteristic oral phenotype. It highlights for the first time examples of FAM20A mutations missed by the most commonly used mutation screening techniques. This information informed renal assessment and ongoing clinical care.Medical Research Council/[MR/LO1629X/1]/MRC/InglaterraThe Sir Jules Thorn Award for Biomedical Research/[JTA/09]//InglaterraWellcome Trust/[093113]//InglaterraUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Odontologí
    corecore