645 research outputs found

    Turbulent transport modelling of separating and reattaching shear flows

    Get PDF
    The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries

    Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Get PDF
    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow

    Influence of reaction atmosphere (H2O, N2, H2, CO2, CO) on fluidized-bed fast pyrolysis of biomass using detailed tar vapor chemistry in computational fluid dynamics

    Get PDF
    Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis

    On the equations of mathematical hydraulics

    Full text link
    The relation between classical hydraulics and modern turbulence modelling is discussed for the case of two-dimensional open channel flow down an inclined plane. A second order turbulence model describing the flow is treated asymptotically for the parameter range F ≥ O (1), δ ≪1, β ≪1, and δ = O ( β 2 ), where F is the Froude number, δ is the aspect ratio, and β is the square root of a characteristic drag coefficient. The Chezy law formulation of mathematical hydraulics is derived as the lowest order approximation to the solution for the flow outside bore regions, and the transverse variation of the longitudinal velocity component is determined at the next stage of the analysis. It is shown that flow discontinuities calculated using the equations of mathematical hydraulics are resolved in bore regions of transverse length scale O ( H o ), where H o is the characteristic fluid depth. The bore structure is found to consist of a highly turbulent outer region with transverse length scale O ( H o ) in which the turbulence intensity is O (1), and a bottom boundary layer of transverse length scale O ( β 2 H o ), in which the turbulent stresses decrease rapidly to satisfy the bottom boundary conditions. The jump conditions of mathematical hydraulics at flow discontinuities are verified, and it is inferred that classical hydraulics provides an acceptable approximation to the flow outside bore regions for the parameter range considered in the theory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43446/1/33_2004_Article_BF00945957.pd

    Sedimentation and Flow Through Porous Media: Simulating Dynamically Coupled Discrete and Continuum Phases

    Full text link
    We describe a method to address efficiently problems of two-phase flow in the regime of low particle Reynolds number and negligible Brownian motion. One of the phases is an incompressible continuous fluid and the other a discrete particulate phase which we simulate by following the motion of single particles. Interactions between the phases are taken into account using locally defined drag forces. We apply our method to the problem of flow through random media at high porosity where we find good agreement to theoretical expectations for the functional dependence of the pressure drop on the solid volume fraction. We undertake further validations on systems undergoing gravity induced sedimentation.Comment: 22 pages REVTEX, figures separately in uudecoded, compressed postscript format - alternatively e-mail '[email protected]' for hardcopies

    Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: Simulation by coupling Eulerian, Lagrangian and 3D random walks models

    Full text link
    [EN] Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the carrier fluid that are seen by the bubbles due to turbulence fluctuations. Also we have included in the model the deformation that suffers the bubble when it touches the wall and it is compressed by the forces that pushes it toward the wall, provoking that the bubble rebound like a ball.The authors of this paper are indebted to the National Plan of I+D by the support of the coordinated projects REMOD-ERN ENE2010-21368-C02-01/CON and ENE2010-21368-C02-02/CON to perform the experiments.Muñoz-Cobo, JL.; Chiva, S.; Ali Abdelaziz Essa, M.; Mendez, S. (2012). Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: Simulation by coupling Eulerian, Lagrangian and 3D random walks models. Archives of Thermodynamics. 33(1):3-39. https://doi.org/10.2478/v10173-012-0001-4S33933
    • …
    corecore