1,560 research outputs found

    The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    Get PDF
    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

    A modern Fizeau experiment for education and outreach purposes

    Full text link
    On the occasion of the laser's 50th anniversary, we performed a modern Fizeau experiment, measuring the speed of light with a laser beam passing over the city centre of Marseille. For a round trip distance of almost five kilometers, the measurement has reached an uncertainty of about 10−4^{-4}, mainly due to atmospheric fluctuations. We present the experimental and pedagogical challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201

    Appropriateness of internal digital phantoms for monitoring the stability of the UBIS 5000 quantitative ultrasound device in clinical trials

    Get PDF
    In bone status assessment, proper quality assurance/quality control is crucial since changes due to disease or therapeutic treatment are very small, in the order of 2-5%. Unlike for dual X-ray absorptiometry, quality control procedures have not been extensively developed and validated for quantitative ultrasound technology, limiting its use in longitudinal monitoring. While the challenge of developing an ideal anthropometric phantom is still open, some manufacturers use the concept of the internal digital phantom mimicking human characteristics to check the stability of their device. The objective of the study was to develop a sensitive model of quality control suitable for the correction of QUS patient data. In order to achieve this goal, we simulated a longitudinal device lifetime with both correct and malfunctioning behaviors. Then, we verified the efficiency of digital phantoms in detecting those changes and subsequently established the in vitro/in vivo relationship. This is the first time that an attempt to validate an internal digital phantom has made, and that this type of validation approach is used. The digital phantom (DP) was designed to mimic normal bone (BUAP2) and osteoporotic bone (BUAP1) properties. The DP was studied using the UBIS 5000 ultrasound device (DMS, France). Diverse malfunctions of the UBIS-5000 were simulated. Several series of measurements were performed on both BUAP1 and 2 and on 12 volunteers at each grade of malfunction. The effect of each simulated malfunction on in vivo and in vitro results was presented graphically by plotting the average BUA values against the percentage change from baseline. The change from baseline in BUA was modeled using linear regression, and the in vivo/in vitro ratio was obtained from the model. All experimentations influenced the measure of BUAP1 and 2 as well as the measure of our 12 volunteers. However, the degree of significance varied as a function of the severity of the malfunction, and the results also differed substantially in magnitude between in vivo and in vitro. Indeed, the DP was about 10 times more sensitive to variations of the transfer function than was the in vivo measurement, which is very reassuring. The sensitivity of the digital phantoms was reliable in the determination of simulated malfunctions of the UBIS-5000. The digital phantoms provided an accurate evaluation of the acoustic performance of the scanner, including the fidelity of transducers. In light of these results, the QC approach of the UBIS-5000 will be extremely simple to implement compared with other devices. Indeed, since the digital phantom was automatically measured during every patient measurement, the QC approach could be built on an individual level basis rather than on an average basi

    Axial speed of sound is related to tendon's nonlinear elasticity.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tAxial speed of sound (SOS) measurements have been successfully applied to noninvasively evaluate tendon load, while preliminary studies showed that this technique also has a potential clinical interest in the follow up of tendon injuries. The ultrasound propagation theory predicts that the SOS is determined by the effective stiffness, mass density and Poisson's ratio of the propagating medium. Tendon stiffness characterizes the tissue's mechanical quality, but it is often measured in quasi-static condition and for entire tendon segments, so it might not be the same as the effective stiffness which determines the SOS. The objectives of the present study were to investigate the relationship between axial SOS and tendon's nonlinear elasticity, measured in standard laboratory conditions, and to evaluate if tendon's mass density and cross-sectional area (CSA) affect the SOS level. Axial SOS was measured during in vitro cycling of 9 equine superficial digital tendons. Each tendon's stiffness was characterized with a tangent modulus (the continuous derivative of the true stress/true strain curve) and an elastic modulus (the slope of this curve's linear region). Tendon's SOS was found to linearly vary with the square root of the tangent modulus during loading; tendon's SOS level was found correlated to the elastic modulus's square root and inversely correlated to the tendon's CSA, but it was not affected by tendon's mass density. These results confirm that tendon's tangent and elastic moduli, measured in laboratory conditions, are related to axial SOS and they represent one of its primary determinants.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    Effect of articular cartilage proteoglycan depletion on high frequency ultrasound backscatter

    Get PDF
    AbstractObjective To study the effect of variations of articular cartilage proteoglycans (PG) on high-frequency ultrasound backscatter.Design The study was performed on patellar cartilages of immature and mature rats (N=36). The variation of PG content was induced by enzyme digestion. Control and treated cartilages were explored in vitro using a 55MHz scanning acoustic microscopy, then assessed by histology for the fibrillar collagen organization analysis. The variations of proteoglycan and collagen content were evaluated. Thickness measurements performed on both B-scan images and histologic sections were compared. Ultrasonic radio-frequency signals reflected by the cartilage surface and backscattered from its internal matrix were processed to estimate the integrated reflection coefficient (IRC) and apparent integrated backscatter (AIB).Results Although hyaluronidase treatment of immature and mature cartilages removed approximately 50% of the proteoglycans, the echogenicity level of ultrasound images of degraded cartilages was similar to that of controls. IRC and AIB parameters did not significantly vary. Histologic sections of degraded cartilage displayed no change in collagen fiber organization. The thickness mean values measured by ultrasound in PG-depleted groups were significantly higher than in controls, whereas no significant difference in thickness was detected by histological measurement. The increase in cartilage thickness may potentially be explained by a decrease of speed of sound in PG-depleted cartilages that is more likely subsequent to an increase of water content.ConclusionCurrent results indicate that PG depletion has no significant effect on high frequency ultrasound backscattered from rat patellar cartilage. Ultrasound may provide information about variations of PG content via speed of sound measurement. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved

    Inter-vehicle gap statistics on signal-controlled crossroads

    Full text link
    We investigate a microscopical structure in a chain of cars waiting at a red signal on signal-controlled crossroads. Presented is an one-dimensional space-continuous thermodynamical model leading to an excellent agreement with the data measured.Moreover, we demonstrate that an inter-vehicle spacing distribution disclosed in relevant traffic data agrees with the thermal-balance distribution of particles in the thermodynamical traffic gas (discussed in [1]) with a high inverse temperature (corresponding to a strong traffic congestion). Therefore, as we affirm, such a system of stationary cars can be understood as a specific state of the traffic sample operating inside a congested traffic stream.Comment: 6 pages, 4 figures, accepted for publication in J. Phys. A: Math. Theo

    High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers

    Get PDF
    The kinetics of isothermal oxidation (1100°C) of commercial nickel-based alloys with different content of sulfur (0.22–3.2 wt ppm) is studied. The adhesion strength in a metal/oxide system is estimated as a function of sulfur content and duration of high-temperature exposure. The scratch-test technique is proposed to quantitatively estimate the work of adhesion of resulting oxide films. It is found that the film microstructure is composed of an inner α-Al2O3 layer and an outer NiAl2O4 spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffraction. spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffractio

    True stress and Poisson's ratio of tendons during loading.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tExcessive axial tension is very likely involved in the aetiology of tendon lesions, and the most appropriate indicator of tendon stress state is the true stress, the ratio of instantaneous load to instantaneous cross-sectional area (CSA). Difficulties to measure tendon CSA during tension often led to approximate true stress by assuming that CSA is constant during loading (i.e. by the engineering stress) or that tendon is incompressible, implying a Poisson's ratio of 0.5, although these hypotheses have never been tested. The objective of this study was to measure tendon CSA variation during quasi-static tensile loading, in order to assess the true stress to which the tendon is subjected and its Poisson's ratio. Eight equine superficial digital flexor tendons (SDFT, about 30cm long) were tested in tension until failure while the CSA of each tendon was measured in its metacarpal part by means of a linear laser scanner. Axial elongation and load were synchronously recorded during the test. CSA was found to linearly decrease with strain, with a mean decrease at failure of -10.7±2.8% (mean±standard deviation). True stress at failure was 7.1-13.6% higher than engineering stress, while stress estimation under the hypothesis of incompressibility differed from true stress of -6.6 to 2.3%. Average Poisson's ratio was 0.55±0.12 and did not significantly vary with load. From these results on equine SDFT it was demonstrated that tendon in axial quasi-static tension can be considered, at first approximation, as an incompressible material.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    First application of an axial speed of sound measurement technique in the monitoring of tendon healing

    Get PDF
    PublishedJournal ArticleN/AInstitut National de la Recherche AgronomiqueRe´gion Basse NormandieDirection Ge´ne´rale de l’Enseignement et de la Recherch

    Axial speed of sound for the monitoring of injured equine tendons: a preliminary study.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tEquine superficial digital flexor tendons (SDFT) are often injured, and they represent an excellent model for human sport tendinopathies. While lesions can be precisely diagnosed by clinical evaluation and ultrasonography, a prognosis is often difficult to establish; the knowledge of the injured tendon's mechanical properties would help in anticipating the outcome. The objectives of the present study were to compare the axial speed of sound (SOS) measured in vivo in normal and injured tendons and to investigate their relationship with the tendons' mechanical parameters, in order to assess the potential of quantitative axial ultrasound to monitor the healing of the injured tendons. SOS was measured in vivo in the right fore SDFTs of 12 horses during walk, before and 3.5 months after the surgical induction of a bilateral core lesion. The 12 horses were then euthanized, their SDFTs isolated and tested in tension to measure their elastic modulus and maximal load (and corresponding stress). SOS significantly decreased from 2179.4 ± 31.4 m/s in normal tendons to 2065.8 ± 67.1 m/s 3.5 months after the surgical induction, and the tendons' elastic modulus (0.90 ± 0.17 GPa) was found lower than what has been reported in normal tendons. While SOS was not correlated to tendon maximal load and corresponding stress, the SOS normalized on its value in normal tendons was correlated to the tendons' elastic modulus. These preliminary results confirm the potential of axial SOS in helping the functional assessment of injured tendon.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche AgronomiqueAgence Nationale de la Recherch
    • …
    corecore