158 research outputs found

    Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine has been abandoned as first- or second-line treatment by most African malaria endemic countries in favour of artemisinin-based combination treatments, but the drug is still used as intermittent preventive treatment during pregnancy. However, resistance to sulphadoxine-pyrimethamine has been increasing in the past few years and, although the link between molecular markers and treatment failure has not been firmly established, at least for pregnant women, it is important to monitor such markers. METHODS: This paper reports a novel sensitive, semi-quantitative and specific real-time PCR and melting curve analysis (MCA) assay using fluorescence resonance energy transfer (FRET) for the detection of DHPS-540, an important predictor for SP resistance. FRET/MCA was evaluated using 78 clinical samples from malaria patients and compared to PCR-RFLP. RESULTS: Sixty-two samples were in perfect agreement between both assays. One sample showed a small wild type signal with FRET/MCA that indicates a polyclonal infection. Four samples were not able to generate enough material in both assays to distinguish mutant from wild-type infection, six samples gave no signal in PCR-RFLP and five samples gave no amplification in FRET/MCA. CONCLUSION: FRET/MCA is an effective tool for the identification of SNPs in drug studies and epidemiological surveys on resistance markers in general and DHPS-540 mutation in particular

    Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type

    Get PDF
    The loss of chloroquine due to selection and spread of drug resistant Plasmodium falciparum parasites has greatly impacted malaria control, especially in highly endemic areas of Africa. Since chloroquine removal a decade ago, the guidelines to treat falciparum malaria suggest combination therapies, preferentially with an artemisinin derivative. One of the recommended partner drugs is amodiaquine, a pro-drug that relies on its active metabolite monodesethylamodiaquine, and is still effective in areas of Africa, but not in regions of South America. Genetic studies on P. falciparum parasites have shown that different pfcrt mutant haplotypes are linked to distinct levels of chloroquine and amodiaquine responses. The pfcrt haplotype SVMNT (termed after the amino acids from codon positions 72-76) is stably present in several areas where amodiaquine was introduced and widely used. Parasites with this haplotype are highly resistant to monodesethylamodiaquine and also resistant to chloroquine. The presence of this haplotype in Africa was found for the first time in 2004 in Tanzania and a role for amodiaquine in the selection of this haplotype was suggested. This commentary discusses the finding of a second site in Africa with high incidence of this haplotype. The >50% SVMNT haplotype prevalence in Angola represents a threat to the rise and spread of amodiaquine resistance. It is paramount to monitor pfcrt haplotypes in every country currently using amodiaquine and to re-evaluate current combination therapies in areas where SVMNT type parasites are prevalent

    Negative Smad Expression and Regulation in the Developing Chick Limb

    Get PDF
    The inhibitory or negative Smads, Smad6 and Smad7, block TGFβ superfamily signals of both the BMP and TGFβ classes by antagonizing the intracellular signal transduction machinery. We report the cloning of one Smad6 and two Smad7 (Smad7a and Smad7b) chick homologs and their expression and regulation in the developing limb. Smad6 and Smad7a are expressed in dynamic patterns reflecting the domains of BMP gene expression in the limb. Activation and inhibition of the BMP signaling pathway in limb mesenchyme indicates that negative Smad gene expression is regulated, at least in part, by BMP family signals

    A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chloroquine resistance (CR) decreased after the removal of chloroquine from national treatment guidelines in Malawi, Kenia and Tanzania. In this investigation the prevalence of the chloroquine resistance (CQR) conferring mutant <it>pfcrt </it>allele and its associated chromosomal haplotype were determined before and after the change in Gabonese national treatment guidelines from chloroquine (CQ) to artesunate plus amodiaquine (AQ) in 2003.</p> <p>Methods</p> <p>The prevalence of the wild type <it>pfcrt </it>allele was assessed in 144 isolates from the years 2005 - 07 by PCR fragment restriction digest and direct sequencing. For haplotype analysis of the chromosomal regions flanking the <it>pfcrt </it>locus, microsatellite analysis was done on a total of 145 isolates obtained in 1995/96 (43 isolates), 2002 (47 isolates) and 2005 - 07 (55 isolates).</p> <p>Results</p> <p>The prevalence of the mutant <it>pfcrt </it>allele decreased from 100% in the years 1995/96 and 2002 to 97% in 2005 - 07. Haplotype analysis showed that in 1995/96 79% of the isolates carried the same microsatellite alleles in a chromosomal fragment spanning 39 kb surrounding the <it>pfcrt </it>locus. In 2002 and 2005 - 07 the prevalence of this haplotype was 62% and 58%, respectively. <it>Pfcrt </it>haplotype analysis showed that all wild type alleles were CVMNK.</p> <p>Conclusion</p> <p>Four years after the withdrawal of CQ from national treatment guidelines the prevalence of the mutant <it>pfcrt </it>allele remains at 97%. The data suggest that the combination of artesunate plus AQ may result in continued selection for the mutant <it>pfcrt </it>haplotype even after discontinuance of CQ usage.</p

    Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of drug resistance in malaria parasites highlights a need to identify and evaluate strategies that could extend the useful therapeutic life of anti-malarial drugs. Such strategies are deployed to best effect before resistance has emerged, under conditions of great uncertainty.</p> <p>Methods</p> <p>Here, the emergence and spread of resistance was modelled using a hybrid framework to evaluate prospective strategies, estimate the time to drug failure, and weigh uncertainty. The waiting time to appearance was estimated as the product of low mutation rates, drug pressure, and parasite population sizes during treatment. Stochastic persistence and the waiting time to establishment were simulated as an evolving branching process. The subsequent spread of resistance was simulated in simple epidemiological models.</p> <p>Results</p> <p>Using this framework, the waiting time to the failure of artemisinin combination therapy (ACT) for malaria was estimated, and a policy of multiple first-line therapies (MFTs) was evaluated. The models quantify the effects of reducing drug pressure in delaying appearance, reducing the chances of establishment, and slowing spread. By using two first-line therapies in a population, it is possible to reduce drug pressure while still treating the full complement of cases.</p> <p>Conclusions</p> <p>At a global scale, because of uncertainty about the time to the emergence of ACT resistance, there was a strong case for MFTs to guard against early failure. Our study recommends developing operationally feasible strategies for implementing MFTs, such as distributing different ACTs at the clinic and for home-based care, or formulating different ACTs for children and adults.</p

    Imported Plasmodium falciparum malaria in HIV-infected patients: a report of two cases

    Get PDF
    As HIV becomes a chronic infection, an increasing number of HIV-infected patients are travelling to malaria-endemic areas. Association of malaria with HIV/AIDS can be clinically severe. Severe falciparum malaria is a medical emergency that is associated with a high mortality, even when treated in an Intensive Care Unit. This article describes two cases of HIV-positive patients, who returned from malaria-endemic areas and presented a parasitaemia > 5% of erythrocytes and clinical signs of severe falciparum malaria, both with > 350 CD4 cell count/μl, absence of chemoprophylaxis and successful response. Factors like drug interactions and the possible implication of anti-malarial therapy bioavailability are all especially interesting in HIV-malaria co-infections

    Falciparum malaria and HIV-1 in hospitalized adults in Maputo, Mozambique: does HIV-infection obscure the malaria diagnosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential impact of HIV-1 on falciparum malaria has been difficult to determine because of diagnostic problems and insufficient epidemiological data.</p> <p>Methods</p> <p>In a prospective, cross-sectional study, clinical and laboratory data was registered consecutively for all adults admitted to a medical ward in the Central Hospital of Maputo, Mozambique, during two months from 28<sup>th </sup>October 2006. Risk factors for fatal outcome were analysed. The impact of HIV on the accuracy of malaria diagnosis was assessed, comparing "Presumptive malaria", a diagnosis assigned by the ward clinicians based on fever and symptoms suggestive of malaria in the absence of signs of other infections, and "Verified malaria", a malaria diagnosis that was not rejected during retrospective review of all available data.</p> <p>Results</p> <p>Among 333 included patients, fifteen percent (51/333) had "presumptive malaria", ten percent (28 of 285 tested persons) had positive malaria blood slides, while 69.1% (188/272) were HIV positive. Seven percent (n = 23) had "verified malaria", after the diagnosis was rejected in patients with neck stiffness or symptom duration longer than 2 weeks (n = 5) and persons with negative (n = 19) or unknown malaria blood slide (n = 4). Clinical stage of HIV infection (CDC), hypotension and hypoglycaemia was associated with fatal outcome. The "presumptive malaria" diagnosis was rejected more frequently in HIV positive (20/31) than in HIV negative patients (2/10, p = 0.023).</p> <p>Conclusion</p> <p>The study suggests that the fraction of febrile illness attributable to malaria is lower in HIV positive adults. HIV testing should be considered early in evaluation of patients with suspected malaria.</p

    Temporal trends of molecular markers associated with artemether- lumefantrine tolerance/resistance in Bagamoyo district, Tanzania

    Get PDF
    Background: Development and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy (ACT) constitutes a major threat to recent global malaria control achievements. Surveillance of molecular markers could act as an early warning system of ACT-resistance before clinical treatment failures are apparent. The aim of this study was to analyse temporal trends of established genotypes associated with artemether-lumefantrine tolerance/resistance before and after its deployment as first-line treatment for uncomplicated malaria in Tanzania 2006. Methods: Single nucleotide polymorphisms in the P. falciparum multidrug resistance gene 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine transporter gene (pfcrt) K76T were analysed from dried blood spots collected during six consecutive studies from children with uncomplicated P. falciparum malaria in Fukayosi village, Bagamoyo District, Tanzania, between 2004-2011. Results: There was a statistically significant yearly increase of pfmdr1 N86, 184F, D1246 and pfcrt K76 between 2006-2011 from 14% to 61% (yearly OR = 1.38 [95% CI 1.25-1.52] p \u3c 0.0001), 14% to 35% (OR = 1.17 [95% CI 1.07-1.30] p = 0.001), 54% to 85% (OR = 1.21 [95% CI 1.03-1.42] p = 0.016) and 49% to 85% (OR = 1.33 [95% CI 1.17-1.51] p \u3c 0.0001), respectively. Unlike for the pfmdr1 SNP, a significant increase of pfcrt K76 was observed already between 2004-2006, from 26% to 49% (OR = 1.68 [95% CI 1.17-2.40] p = 0.005). From 2006 to 2011 the pfmdr1 NFD haplotype increased from 10% to 37% (OR = 1.25 [95% CI 1.12-1.39] p \u3c 0.0001), whereas the YYY haplotype decreased from 31% to 6% (OR = 0.73 [95% CI 0.56-0.98] p = 0.018). All 390 successfully analysed samples had one copy of the pfmdr1 gene. Conclusion: The temporal selection of molecular markers associated with artemether-lumefantrine tolerance/resistance may represent an early warning sign of impaired future drug efficacy. This calls for stringent surveillance of artemether-lumefantrine efficacy in Tanzania and emphasizes the importance of molecular surveillance as a complement to standard in vivo trials. © 2013 Malmberg et al.; licensee BioMed Central Ltd
    corecore