74 research outputs found

    Using three pairs of competitive indices to test for changes in plant competition under different resource and disturbance levels

    Get PDF
    Abstract Questions: How do different resource and disturbance levels interact to affect competition? How do different indices of competition change the interpretation of how competition changes under different resource and disturbance conditions? Location: Greenhouse, Thompson Rivers University, Kamloops, British Columbia, Canada. Methods: Three pairs of indices that have been used to differentiate the predictions of Grime (CSR) and Tilman's (R Ã ) theories were used to assess competition on two species of temperate bunchgrass, (Pseudorogeneria spicata and Festuca campestris) grown in a greenhouse on stress and disturbance gradients. Stress was created by manipulating the amount of water (high, low) and concentration of nutrient solution (high, low) added to pots, while disturbance was created by clipping (clipped, unclipped) in a fully factorial design. Plants were grown individually or with a single neighbour. The three pairs of indices were: (1) absolute and relative competition; (2) competitive effect and response; and, (3) competitive importance and intensity. Results: Absolute competition and competitive importance were the only indices responsive to the resource gradient, which supports CSR theory, and also the only ones to record an effect of disturbance on the strength of competition -under high resource conditions. The other indices showed few responses along the gradients, which supports R Ã theory. Measures of competitive effect and response did not differentiate the two theories. Conclusion: We show that some indices of competition show a decline with increased stress and disturbance, while other indices do not. Therefore, it is necessary to choose a competition index appropriate to the question being asked. Competitive importance and absolute competition were responsive to changes in stress and disturbance, while the other indices were not. Keywords: Absolute and relative competition; Clipping; Competitive effect and response; CSR strategy theory; Drought; Festuca campestris; Importance and intensity of competition; Nutrient availability; Pseudoroegneria spicata; R Ã theory. Nomenclature: Douglas et al. (1994). Abbreviations: C ab 5 absolute competition; C int 5 competitive intensity; C imp 5 competitive importance; C e 5 competitive effect; C r 5 competitive response

    Using three pairs of competitive indices to test for changes in plant competition under different resource and disturbance levels

    Get PDF
    Abstract Questions: How do different resource and disturbance levels interact to affect competition? How do different indices of competition change the interpretation of how competition changes under different resource and disturbance conditions? Location: Greenhouse, Thompson Rivers University, Kamloops, British Columbia, Canada. Methods: Three pairs of indices that have been used to differentiate the predictions of Grime (CSR) and Tilman's (R Ã ) theories were used to assess competition on two species of temperate bunchgrass, (Pseudorogeneria spicata and Festuca campestris) grown in a greenhouse on stress and disturbance gradients. Stress was created by manipulating the amount of water (high, low) and concentration of nutrient solution (high, low) added to pots, while disturbance was created by clipping (clipped, unclipped) in a fully factorial design. Plants were grown individually or with a single neighbour. The three pairs of indices were: (1) absolute and relative competition; (2) competitive effect and response; and, (3) competitive importance and intensity. Results: Absolute competition and competitive importance were the only indices responsive to the resource gradient, which supports CSR theory, and also the only ones to record an effect of disturbance on the strength of competition -under high resource conditions. The other indices showed few responses along the gradients, which supports R Ã theory. Measures of competitive effect and response did not differentiate the two theories. Conclusion: We show that some indices of competition show a decline with increased stress and disturbance, while other indices do not. Therefore, it is necessary to choose a competition index appropriate to the question being asked. Competitive importance and absolute competition were responsive to changes in stress and disturbance, while the other indices were not. Keywords: Absolute and relative competition; Clipping; Competitive effect and response; CSR strategy theory; Drought; Festuca campestris; Importance and intensity of competition; Nutrient availability; Pseudoroegneria spicata; R Ã theory. Nomenclature: Douglas et al. (1994). Abbreviations: C ab 5 absolute competition; C int 5 competitive intensity; C imp 5 competitive importance; C e 5 competitive effect; C r 5 competitive response

    Hydrology, Water Chemistry, and Vegetation Characteristics of a Tamarack Bog in Bath Township, Ohio: Towards Restoration and Enhancement

    Get PDF
    Author Institution: Dept. of Biology, University of Akron, OHAuthor Institution: Dept. of Botany, University of British Columbia, Vancouver, BC, CanadaAuthor Institution: Dept. of Natural Resource Science, Thompson Rivers University, Kamloops, BC, CanadaThe current state of the Bath Tamarack Bog has raised concern about the health and function of the system. Only 6 tamarack (Larix laricina) trees remain, while deciduous trees, particularly red maple (Acer rubrum) and invasive species such as glossy buckthorn (Rhamnus frangula) and multiflora rose (Rosa multiflora), dominate the bog. Our purpose was to assess the physical, chemical, and biological properties of the tamarack bog. Environmental and biological properties of Bath Tamarack Bog were measured from May 2001 through November 2002. In 2001, the center of the bog experienced water levels below those typically found in bogs, yet experienced normal water levels in the following year. Water chemistry results indicate the pH is much greater than that characteristic of a typical bog, ranging from 5.94 to 7.41. Nutrient levels fluctuated and were generally higher for calcium, potassium, and phosphate than a typical bog, while nitrogen levels remained low. These results indicate that the bog is not functioning normally and is in decline. The degradation of the bog is most likely due to anthropogenic activity. Ditching occurred between 1963 and 1969 and seems to have induced the progression of red maple trees and invasive species into the bog by lowering water levels. Since 1938, the first aerial photo we have record of, the bog has reduced to approximately a third of its size, which is approximately 1.99 hectares. The bog appears to be in a late successional stage, rapidly changing to a forested wetland. We discuss possible management and restoration efforts needed to restore or enhance the tamarack bog, including 1) planting Sphagnum mats, 2) introducing tamarack seedlings, 3) controlling invasive species, and 4) maintaining the hydrology close to the soil surface. All of these measures are suggested in association with educational outreach

    Response to Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”

    Get PDF
    Tredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship

    Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses To Reduced Precipitation: Results from A Globally-Coordinated Field Experiment

    Get PDF
    Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze-thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity

    Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science

    Get PDF
    There is a growing realization among scientists and policy makers that an increased understanding of today's environmental issues requires international collaboration and data synthesis. Meta-analyses have served this role in ecology for more than a decade, but the different experimental methodologies researchers use can limit the strength of the meta-analytic approach. Considering the global nature of many environmental issues, a new collaborative approach, which we call coordinated distributed experiments (CDEs), is needed that will control for both spatial and temporal scale, and that encompasses large geographic ranges. Ecological CDEs, involving standardized, controlled protocols, have the potential to advance our understanding of general principles in ecology and environmental science

    Extreme drought impacts have been underestimated in grasslands and shrublands globally

    Get PDF
    Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Publication history: Accepted - 19 May 2021; Published - 5 August 2021.Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.Eesti Teadusagentuur, Grant/Award Number: PRG609 and PUT1409; Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Science Foundation Ireland, Grant/Award Number: 15/ERCD/2803; Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: IJCI-2017- 32039; European Regional Development Fun

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015
    corecore