3,624 research outputs found

    A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    Get PDF
    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher

    Mechanisms Regulating Deep Moist Convection and Sea-Surface Temperatures of the Tropics

    Get PDF
    Despite numerous previous studies, two relationships between deep convection and the sea-surface temperature (SST) of the tropics remain unclear. The first is the cause for the sudden emergence of deep convection at about 28 deg SST, and the second is its proximity to the highest observed SST of about 30 C. Our analysis provides a rational explanation for both by utilizing the Improved Meteorological (IMET) buoy data together with radar rainfall retrievals and atmospheric soundings provided by the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The explanation relies on the basic principles of moist convection as enunciated in the Arakawa-Schubert cumulus parameterization. Our analysis shows that an SST range of 28-29 C is necessary for "charging" the atmospheric boundary layer with sufficient moist static energy that can enable the towering convection to reach up to the 200 hPa level. In the IMET buoy data, the changes in surface energy fluxes associated with different rainfall amounts show that the deep convection not only reduces the solar flux into the ocean with a thick cloud cover, but it also generates downdrafts which bring significantly cooler and drier air into the boundary-layer thereby augmenting oceanic cooling by increased sensible and latent heat fluxes. In this way, the ocean seasaws between a net energy absorber for non-raining and a net energy supplier for deep-convective raining conditions. These processes produce a thermostat-like control of the SST. The data also shows that convection over the warm pool is modulated by dynamical influences of large-scale circulation embodying tropical easterly waves (with a 5-day period) and MJOs (with 40-day period); however, the quasi-permanent feature of the vertical profile of moist static energy, which is primarily maintained by the large-scale circulation and thermodynamical forcings, is vital for both the 28 C SST for deep convection and its upper limit at about 30 C

    The Baryon Content of Cosmic Structures

    Full text link
    We make an inventory of the baryonic and gravitating mass in structures ranging from the smallest galaxies to rich clusters of galaxies. We find that the fraction of baryons converted to stars reaches a maximum between M500 = 1E12 and 1E13 Msun, suggesting that star formation is most efficient in bright galaxies in groups. The fraction of baryons detected in all forms deviates monotonically from the cosmic baryon fraction as a function of mass. On the largest scales of clusters, most of the expected baryons are detected, while in the smallest dwarf galaxies, fewer than 1% are detected. Where these missing baryons reside is unclear.Comment: ApJ Letters, in pres

    Center of mass integral in canonical general relativity

    Full text link
    For a two-surface B tending to an infinite--radius round sphere at spatial infinity, we consider the Brown--York boundary integral H_B belonging to the energy sector of the gravitational Hamiltonian. Assuming that the lapse function behaves as N \sim 1 in the limit, we find agreement between H_B and the total Arnowitt--Deser--Misner energy, an agreement first noted by Braden, Brown, Whiting, and York. However, we argue that the Arnowitt--Deser--Misner mass--aspect differs from a gauge invariant mass--aspect by a pure divergence on the unit sphere. We also examine the boundary integral H_B corresponding to the Hamiltonian generator of an asymptotic boost, in which case the lapse N \sim x^k grows like one of the asymptotically Cartesian coordinate functions. Such an integral defines the kth component of the center of mass for a Cauchy surface \Sigma bounded by B. In the large--radius limit, we find agreement between H_B and an integral introduced by Beig and O'Murchadha. Although both H_B and the Beig--O'Murchadha integral are naively divergent, they are in fact finite modulo the Hamiltonian constraint. Furthermore, we examine the relationship between H_B and a certain two--surface integral linear in the spacetime Riemann curvature tensor. Similar integrals featuring the curvature appear in works by Ashtekar and Hansen, Penrose, Goldberg, and Hayward. Within the canonical 3+1 formalism, we define gravitational energy and center--of--mass as certain moments of Riemann curvature.Comment: 52 pages, revtex4, uses amsmath and amssym

    Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    Get PDF
    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field

    Possible Central Nervous System Infection by SARS Coronavirus

    Get PDF
    On day 22 of illness, generalized tonic-clonic convulsion developed in a 32-year-old woman with severe acute respiratory syndrome (SARS). Cerebrospinal fluid tested positive for SARS coronavirus (SARS-CoV) by reverse transcriptase–polymerase chain reaction. SARS-CoV may have caused an infection in the central nervous system in this patient

    Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum

    Get PDF
    Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS
    • …
    corecore