14,656 research outputs found
Recommended from our members
Biomimetic Design and Fabrication of Interior Architecture of Tissue Scaffolds Using Solid Freeform Fabrication
Modeling, design and fabrication of tissue scaffolds with intricate architecture,
porosity and pore size for desired tissue properties presents a challenge in tissue engineering.
This paper will present the details of our development in designing and fabrication of the
interior architecture of scaffolds using a novel design approach. The Interior Architecture
Design (IAD) approach seeks to generate scaffold layered freeform fabrication tool path without
forming complicated 3D CAD scaffold models. This involves: applying the principle of layered
manufacturing to determine the scaffold individual layered process planes and layered contour;
defining the 2D characteristic patterns of the scaffold building blocks (unit cells) to form the
Interior Scaffold Pattern; and the generation of process tool path for freeform fabrication of
these scaffolds with the specified interior architecture. Feasibility studies applying the IAD
algorithm to example models and the generation of fabrication planning instructions will be
presented.Mechanical Engineerin
Phase Transitions in Lyotropic Nematic Gels
In this paper, we discuss the equilibrium phases and collapse transitions of
a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel
consists of a cross-linked polymer network with rod-like molecules embedded in
it. Upon decreasing the quality of the solvent, we find that a lyotropic
nematic gel undergoes a discontinuous volume change accompanied by an
isotropic-nematic transition. We also present phase diagrams that these systems
may exhibit. In particular, we show that coexistence of two isotropic phases,
of two nematic phases, or of an isotropic and a nematic phase can occur.Comment: 13 pages Revtex, 10 figures, submitted to EPJ
Structural evaluation of concrete expanded polystyrene sandwich panels for slab applications
Sandwich panels are being extensively and increasingly used in building construction because they are light in weight, energy efficient, aesthetically attractive and can be easily handled and erected. This paper presents a structural evaluation of Concrete-Expanded Polystyrene (CEPS) sandwich panels for slab applications using finite element modeling approach. CEPS panels are made of expanded polystyrene foam sandwiched between concrete skins. The use of foam in the middle of sandwich panel reduces the weight of the structure and also acts as insulation against thermal, acoustics and vibration. Applying reinforced concrete skin to both sides of panel takes the advantages of the sandwich concept where the reinforced concrete skins take compressive and tensile loads resulting in higher stiffness and strength and the core transfers shear loads between the faces. This research uses structural software Strand7, which is based on finite element method, to predict the load deformation behaviour of the CEPS sandwich slab panels. Non linear static analysis was used in the numerical investigations. Predicted results were compared with the existing experimental results to validate the numerical approach used
Recommended from our members
Direct Slicing of STEP Based NURBS Models for Solid Freeform Fabrication
Direct slicing of CAD models to generate process planning instructions for solid freeform
fabrication may overcome inherent disadvantages of using STL format in terms of the process
accuracy, ease of file management, and incorporation of multiple materials. This paper will
present the results of our development of a direct slicing algorithm for layered freeform
fabrication. The direct slicing algorithm was based on a neutral, international standard (ISO
10303) STEP-formatted NURBS geometric representation and is intended to be independent of
any commercial CAD software. The following aspects of the development effort will be
presented: 1) Determination of optimal build direction based upon STEP-based NURBS models;
2) Adaptive subdivision of NURBS data for geometric refinement; and 3) Ray-casting slice
generation into sets of raster patterns. Feasibility studies applying the direct slicing algorithm to
example models and the generation of fabrication planning instructions involving multi-material
structures will also be presented.Mechanical Engineerin
Single polaron properties of the breathing-mode Hamiltonian
We investigate numerically various properties of the one-dimensional (1D)
breathing-mode polaron. We use an extension of a variational scheme to compute
the energies and wave-functions of the two lowest-energy eigenstates for any
momentum, as well as a scheme to compute directly the polaron Greens function.
We contrast these results with results for the 1D Holstein polaron. In
particular, we find that the crossover from a large to a small polaron is
significantly sharper. Unlike for the Holstein model, at moderate and large
couplings the breathing-mode polaron dispersion has non-monotonic dependence on
the polaron momentum k. Neither of these aspects is revealed by a previous
study based on the self-consistent Born approximation
New variables, the gravitational action, and boosted quasilocal stress-energy-momentum
This paper presents a complete set of quasilocal densities which describe the
stress-energy-momentum content of the gravitational field and which are built
with Ashtekar variables. The densities are defined on a two-surface which
bounds a generic spacelike hypersurface of spacetime. The method used
to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a
suitable covariant action principle for the Ashtekar variables. As such, the
theory presented here is an Ashtekar-variable reformulation of the metric
theory of quasilocal stress-energy-momentum originally due to Brown and York.
This work also investigates how the quasilocal densities behave under
generalized boosts, i. e. switches of the slice spanning . It is
shown that under such boosts the densities behave in a manner which is similar
to the simple boost law for energy-momentum four-vectors in special relativity.
The developed formalism is used to obtain a collection of two-surface or boost
invariants. With these invariants, one may ``build" several different mass
definitions in general relativity, such as the Hawking expression. Also
discussed in detail in this paper is the canonical action principle as applied
to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and
improved quite a bit. To appear in Classical and Quantum Gravit
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes
Helical or coiled nanostructures have been object of intense experimental and
theoretical studies due to their special electronic and mechanical properties.
Recently, it was experimentally reported that the dynamical response of
foamlike forest of coiled carbon nanotubes under mechanical impact exhibits a
nonlinear, non-Hertzian behavior, with no trace of plastic deformation. The
physical origin of this unusual behavior is not yet fully understood. In this
work, based on analytical models, we show that the entanglement among
neighboring coils in the superior part of the forest surface must be taken into
account for a full description of the strongly nonlinear behavior of the impact
response of a drop-ball onto a forest of coiled carbon nanotubes.Comment: 4 pages, 3 figure
The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations
We address the problem of evaluating the power spectrum of the velocity field
of the ICM using only information on the plasma density fluctuations, which can
be measured today by Chandra and XMM-Newton observatories. We argue that for
relaxed clusters there is a linear relation between the rms density and
velocity fluctuations across a range of scales, from the largest ones, where
motions are dominated by buoyancy, down to small, turbulent scales:
, where
is the spectral amplitude of the density perturbations at wave number ,
is the mean square component of the velocity field,
is the sound speed, and is a dimensionless constant of order unity.
Using cosmological simulations of relaxed galaxy clusters, we calibrate this
relation and find . We argue that this value is set at
large scales by buoyancy physics, while at small scales the density and
velocity power spectra are proportional because the former are a passive scalar
advected by the latter. This opens an interesting possibility to use gas
density power spectra as a proxy for the velocity power spectra in relaxed
clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter
Direct slicing of STEP based NURBS models for layered manufacturing
Abstract Direct slicing of CAD models to generate process planning instructions for solid freeform fabrication may overcome inherent disadvantages of using stereolithography format in terms of the process accuracy, ease of file management, and incorporation of multiple materials. This paper will present the results of our development of a direct slicing algorithm for layered freeform fabrication. The direct slicing algorithm was based on a neutral, international standard (ISO 10303) STEP-formatted non-uniform rational B-spline (NURBS) geometric representation and is intended to be independent of any commercial CAD software. The following aspects of the development effort will be presented: (1) determination of optimal build direction based upon STEP-based NURBS models; (2) adaptive subdivision of NURBS data for geometric refinement; and (3) ray-casting slice generation into sets of raster patterns. The development also provides for multi-material slicing and will provide an effective tool in heterogeneous slicing processes.
- …