Helical or coiled nanostructures have been object of intense experimental and
theoretical studies due to their special electronic and mechanical properties.
Recently, it was experimentally reported that the dynamical response of
foamlike forest of coiled carbon nanotubes under mechanical impact exhibits a
nonlinear, non-Hertzian behavior, with no trace of plastic deformation. The
physical origin of this unusual behavior is not yet fully understood. In this
work, based on analytical models, we show that the entanglement among
neighboring coils in the superior part of the forest surface must be taken into
account for a full description of the strongly nonlinear behavior of the impact
response of a drop-ball onto a forest of coiled carbon nanotubes.Comment: 4 pages, 3 figure