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Abstract

In a thorough paper Kucha�r has examined the canonical reduction of the most

general action functional describing the geometrodynamics of the maximally

extended Schwarzschild geometry. This reduction yields the true degrees of

freedom for spherically symmetric general relativity. The essential technical

ingredient in Kucha�r's analysis is a canonical transformation to a certain chart

on the gravitational phase space which features the Schwarzschild mass pa-

rameterMS (expressed o�-shell in terms of ADM-like variables) as a canonical

coordinate. In this paper we reveal the geometric interpretation of Kucha�r's

canonical transformation. We do this by appealing to the theory of quasilocal

energy-momentum in general relativity given by Brown and York. We �nd

Kucha�r's transformation to be a \sphere-dependent boost to the rest frame"

(de�ned by vanishing quasilocal momentum). Furthermore, our formalism is

robust enough to include the pure-dilaton model of Callan, Giddings, Harvey,

Strominger, and Witten. Therefore, besides reviewing Kucha�r's original work

for the Schwarzschild case from the framework of hyperbolic geometry, we

present new results concerning the canonical reduction of Witten-black-hole

geometrodynamics. Finally, addressing a recent work of Louko and Whit-

ing, we discuss some delicate points concerning the canonical reduction of the

\thermodynamical action," which is of central importance in the path-integral

formulation of gravitational thermodynamics.
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I. INTRODUCTION

In a thorough paper (Ref. [1], hereafter referred to as KVK) Kucha�r has examined the

canonical reduction of the most general action functional describing the geometrodynamics

of the maximally extended Schwarzschild geometry. This reduction yields the true degrees

of freedom associated with general relativity subject to ansatz of spherical symmetry. (The

canonical reduction of spherically symmetric gravity has also been considered in detail, but

along a somewhat di�erent line, by Kastrup and Thiemann. [2]) The key technical ingredient

in Kucha�r's analysis is a canonical transformation to a certain chart on the gravitational

phase space which features the Schwarzschild mass parameterM (expressed o�-shell in terms

of ADM-like variables) as a canonical coordinate. Potential applications of the new reduced

formalism include examinations, from the canonical viewpoint, of spherically symmetric col-

lapse, the Hawking e�ect, and gravitational thermodynamics. Indeed, Louko and Whiting

have already made such an application. Applying Kucha�r's method to a spatially bounded

exterior region of the Schwarzschild black hole, they have constructed the Schwarzschild

thermodynamical (canonical) partition function completely within the Lorentzian Hamilto-

nian framework. (Ref. [3], hereafter referred to as LW) Their canonical partition function

is in agreement with previous results derived via the Euclidean-path-integral method. [4]
The starting point in LW is the \thermodynamical action," which is of central importance
in the path-integral formulation of gravitational thermodynamics. A very delicate issue in
the analysis of LW concerns the treatment of the thermodynamical action's boundary terms
under the canonical reduction via the KVK method.

In this paper we reveal the geometric interpretation of Kucha�r's canonical transforma-
tion. By appealing to notions of quasilocal energy and momentum in general relativity which
have been given by Brown and York [5,6], we interpret Kucha�r's canonical transformation as
a \sphere-dependent boost to the rest frame" (de�ned by vanishing quasilocal momentum).
The main point is the following. On an arbitrary (spherically symmetric) spatial slice � the

parameter ' describing the local boost between the slice Eulerian observers at a point and
the rest-frame observers at the same point can be constructed from the canonical variables
of � (if known in a tiny spatial region surrounding the point of interest). Furthermore, we
work in a framework which is robust enough to include the pure-dilaton model of Witten
and Callan, Giddings, Harvey, and Strominger (Refs. [7,8], hereafter CGHSW). Therefore,
besides reviewing some of Kucha�r's original work for the Schwarzschild case from the frame-

work of hyperbolic geometry, we present new results concerning the canonical reduction of
Witten-black-hole geometrodynamics. We show that the canonical transformation of KVK

can be made in the pure-dilaton case. Therefore, the potential applications of the KVK

formalism, listed in the �rst paragraph, are also relevant for two-dimensional pure-dilaton
gravity. Finally, with our general framework we address some of the delicate points, �rst

considered in LW, concerning the canonical reduction of the \thermodynamical action." Our
conceptual framework supports the di�cult technical steps taken in LW. All of our results

are given for both the Schwarzschild and pure-dilaton case.
A few technical points demand some comment at the outset. As mentioned, the analysis

of KVK concerns the full Kruskal spacetime, the maximally extended Schwarzschild geome-

try. The canonical variables used in KVK are de�ned on spatial slices which cut completely

across the Kruskal diagram, and therefore have to obey appropriate boundary conditions
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in the asymptotic regions. In crossing from one spatial in�nity to the other, the slices of

KVK are allowed to cross the horizons in a completely general way. This introduces some

technical di�culties at the horizons, especially when one is considering Kucha�r's canoni-

cal transformation. However, as demonstrated in KVK, with care these di�culties may be

surmounted. We choose to con�ne our attention entirely to the right static region of the

Kruskal diagram. At �rst, we work with the time history of the static region lying between

concentric spheres. Thus we avoid many of the technical di�culties faced by Kucha�r at the

outset. We could, of course, work in the full Kruskal diagram, but the essential points of

this paper do not demand that we do so. However, since we do chose to bypass a techni-

cal treatment of the horizons, questions concerning how to handle such horizon di�culties

remain for the CGHSW pure-dilaton model. However, notationally we adopt nearly the

same conventions as KVK. Therefore, we expect that with the present paper as a stepping

stone, the interested reader could -with minimal e�ort- convert any and all of the horizon

arguments given in KVK into corresponding arguments applicable to the pure-dilaton case.

The layout of this paper is as follows. In x 2, the preliminary section, we describe the

relevant kinematics of our spacetime geometry. Since the spacetime geometry is spherically

symmetric, it proves convenient to work with a toy 1+1 dimensional spacetimeM. In reality,

the points of M are round spheres. In x 3 we derive quasilocal1 energy and momentum
expressions for the physical �elds de�ned on generic spatial slices of M. The method used
to derive the quasilocal expressions is a Hamilton-Jacobi analysis of an appropriate action
principle for M. In x 4 we use the developed notions of quasilocal energy and momentum

to underscore the geometric signi�cance of Kucha�r's canonical transformation. This section
also considers the reduction of the canonical action with the boundary conditions adopted
in this work. The last x 5 considers the canonical reduction of the thermodynamical action.

II. PRELIMINARIES

A. SpacetimeM

Since we deal exclusively with spherically symmetric spacetimes, we chose to work with
a simpli�ed 1 + 1 formalism. Therefore, consider a 1 + 1 dimensional spacetime region
M which is bounded spatially. The region M consists of a collection of one dimensional

spacelike slices �. The letter � denotes both a foliation of M into spacelike slices and a

generic leaf of such a foliation. However, for the initial spacelike slice we reserve the special
symbol t0 (also the value of the coordinate time on the initial slice), and, likewise, for the
�nal spacelike slice we reserve the symbol t00 (also the value of the coordinate time on the

�nal slice). On spacetime M we have global coordinates (t; r), and a generic spacetime

1We use the adjective \quasilocal" because from the four-dimensional viewpoint the energy and

momentum are associated round two-spheres. Thus these \quasilocal" quantities are associated

with points ofM.
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point2 is B(t; r). Every level-time slice � has two spatial boundary points Bi (at r = ri)

and Bo (at r = ro). Assume that along � the coordinate r increases monotonically from Bi

to Bo. We represent the timelike history Bi(t) � B(t; ri) by �Ti (unbarred T is reserved for

another meaning) and refer to it as the inner boundary. Likewise, we represent the timelike

history Bo(t) � B(t; ro) by �To and refer to it as the outer boundary. Later on, when we

deal with black-hole solutions, we will \seal" the inner boundary. In other words, the time

development at the inner boundary will be arrested, and the point Bi will correspond to a

bifurcation point in a Kruskal-like diagram. We denote the corner points of our spacetime

as follows: B0

i � B(t0; ri), B
0

o � B(t0; ro), B
00

i � B(t00; ri), and B
00

o � B(t00; ro).

B. Foliations and spacetime decompositions

The spacetime metric is gab. The metric on a generic � slice is �2, and the metric on

both �Ti and �To is denoted by � �N2. In terms of the � foliation, the metric may be written

the ADM form [19]

gabdx
adxb = �N2dt2 + �2 (dr +N rdt)2 ; (2.1)

with N and N r denoting the familiar lapse and shift. The vector �eld

u =
1

N

 
@

@t
�N r @

@r

!
(2.2)

is the unit, timelike, future-pointing normal to the � foliation.
We can also consider a radial foliation of M by a family of one-dimensional timelike

surfaces which extend from �Ti outward to �To (for black-hole solutions �Ti may be a degenerate
sheet). [9] These are constant-r surfaces. Like before, we loosely use the letter �T both to
denote the radial foliation and a generic leaf of this foliation. We call �T leaves sheets,

whereas we have called � leaves slices (this is an informal convention). In terms of the �T
foliation, the M metric takes the form

gabdx
adxb = ��2dr2 � �N2

�
dt+ ��tdr

�
2

; (2.3)

where �� and ��t are the radial lapse and radial shift. The unit, spacelike, �T -foliation normal

is

�n =
1
��

 
@

@r
� ��t @

@t

!
: (2.4)

We also de�ne the �T boundary normal �n on �Ti and �To by the requirement that it always
be outward-pointing on these boundary elements. On the outer boundary �To the outward
normal is �n = �n, while on the inner boundary �Ti the outward normal is �n = ��n.

2One may consider each point of M to be round two-sphere with radius R(t; r), where R is the

radius function.
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By equating the coe�cients of the above forms of gab, we obtain the following relations

between the \barred" and \unbarred" variables:

�N = N=
 (2.5a)

�� = 
� (2.5b)

�N r=N = � �N ��t=�� : (2.5c)

Here 
 � (1 � v
2)�1=2 is the local relativistic factor associated with the velocity with v �

�N r=N = � �N ��t=�� = ��v.
Consider the collection of spacetime points B(t; r). Fixation of the r coordinate gives

a collection of points B(t) which foliates the sheet �T (of course, �T could be either �Ti or
�To). The normal associated with this foliation of �T is �u = �N�1@=@t. Note that on �T the

vector �elds u and �u need not coincide. Also, �xation of the t coordinate gives a collection

of points B(r) which foliates the slice �. The normal associated this foliation of � is

n = ��1@=@r. Again, we de�ne a boundary normal n such that at the inner boundary n is

�n, the outward-pointing normal of Bi as embedded in �, while at the outer boundary n is

n, the outward-pointing normal of Bo as embedded in �. On the inner and outer boundaries

n and �n need not coincide. It is easy to verify the following point-wise boost relations:

�u = 
u+ v
n (2.6a)

�n = 
n+ v
u : (2.6b)

We can write the boost relations for the boundary normals as

�u = 
u+ v
n (2.7a)

�n = 
n + v
u ; (2.7b)

by simply de�ning v such that v = �v on �Ti and v = v on �To. This is a convention that we
use throughout the paper. Regular letters represent objects associated with the boundary

and have the appropriate sign for each boundary element built in. The same letters but in
boldface or sans serif type represent the same objects but with a �xed sign (always the sign
appropriate for the outer boundary). This is a very useful convention. Note that our use
of sans serif characters has nothing at all to do with the use of sans serif characters used in
KVK and LW.

C. Extrinsic curvatures

The extrinsic curvature of a � slice as embedded in M is

k � � 1p�g@a
�p�gua� : (2.8)

It is easy to see that k = uab
a, where ba � nbrbn

a is the spacetime \acceleration" of

n. We will use b? � �uaba to denote the orthonormal component of the one-dimensional

vector �eld b. One may also consider spacelike slices �� which are everywhere orthogonal by
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assumption to the �T sheets. Since the spacetime-�lling extension of the �T sheets from �To
to �Ti is arbitrary, the �� slices are almost as general as the � slices. However, the �� slices

are restricted by the requirement that their normal vector �eld coincides with �u on the the

boundary elements �To and �Ti. We describe such slices as clamped. When the velocity v

de�ned above is set to zero on the boundary, then the � slices are clamped. (In which case,

there is no longer a need to make a distinction between barred and unbarred slices.) Also

de�ne an extrinsic curvature associated with the �� slices,

�k � � 1p�g@a
�p�g�ua� : (2.9)

Like before, �k = �ua�b
a, where �ba = �nbrb�n

a is the spacetime \acceleration" of �n.

The extrinsic curvature associated with the �T boundary elements is de�ned by

�# � � 1p�g@a
�p�g�na� ; (2.10)

We have that �# = ��nb�ab, where �ab � �uara�u
b is the spacetime acceleration of �u. We may

also consider a foliation T generated by the u-Eulerian histories of points in the � slices. At

the boundary, the T sheets may be \crashing into" or \emerging from" the actual boundary

elements �To and �Ti. Nevertheless, one can de�ne an extrinsic curvature

# � � 1p�g@a
�p�gna� : (2.11)

The value of # at a particular boundary point of �T is associated with the T sheet intersecting
that point. As before, # = �nbab, where ab � uarau

b is the spacetime acceleration of u.
We use the notation a` � nba

b for the orthonormal components of the one-dimensional
vector �eld a. Since by assumption the metric-compatible connection associated with M is
torsion-free, a` = n[logN ].

With our transformation equations (2.7), one can derive the following \splitting" formu-

las for �k and �#:

�k = 
k + v
#� �n[�] (2.12a)

�# = 
#+ v
k� �u[�] ; (2.12b)

where � � tanh�1 v = 1

2
log j(1+v)=(1�v)j. Note that � = tanh�1�v on �Ti and � = tanh�1 v

on �To. In accord with our conventions also set �� � tanh�1 v. In obtaining these formulas, it
helps to realize that �� = 
2�v.

III. ACTION AND QUASILOCAL ENERGY-MOMENTUM

We begin this section by precisely de�ning the type of action functional associated with
our bounded spacetime region M which is of interest in this work. We will discuss in

detail the action's associated variational principle, paying strict attention to all boundary
terms. This is the background work necessary to derive expressions for the quasilocal energy,

momentum, and \stress" associated with a bounded slice �.
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A. Variational principle

Our analysis begins with the following action functional:

S1 = 1

4
�

Z
M

d2x
p�ge�2�

h
R+ 2ygab@a�@b� + 2�2y exp [(2� y)2�]

i

+1

2
�

Z t0

t00
dr�e�2�k� 1

2
�

Z
�T

dt �Ne�2� �#� 1

2
�e�2��

���B00

B0

; (3.1)

where R is the scalar curvature of M built from the metric gab, and the scalar �eld � is

the celebrated dilaton. The variable y is an as-yet unspeci�ed number, and � is a positive

constant with dimensions of inverse length. Finally, � is another positive (and possibly

dimensionful) constant. The M integral in our action corresponds to a subclass of models

within the larger framework generalized dilaton theories. [10] In (3.1) we have used the

short-hand notation

Z t00

t0
=
Z
t00
�
Z
t0
; (3.2)

where the one should note that here t0 and t00 represent the initial and �nal slices and are not
integration parameters. Also, it is understood that �T represents the not-simply-connected
total timelike boundary �Ti S �To. Therefore, �T expressions stand for the sum of an inner-
boundary and an outer-boundary expression. Likewise, B 0 and B00 expressions stand for the
sum of an inner-corner and an outer-corner expression. The boundary terms in the above

action ensure that its associated variational principle features �xation of induced metric and
the dilaton on the boundary. Symbolically, we could collect the boundary terms into one
expression

�
S1
�
@M

= 1

2
�

Z
@M

dx
q

1ge�2�k ; (3.3)

where here k is used for the extrinsic curvature over the whole boundary �T S t0S t00. The
corner-point contributions in (3.1) are included because, though the corner points are a set
of measure zero in the integration of e�2�k over all of @M, the term k becomes in�nite at
the corners, since the boundary normal changes discontinuously from u to �n at these points.3

Finally, we write S1 for the action, because we anticipate the need to append to the action a

Gibbons-Hawking subtraction term �S0 [ �N;�;�] (a functional of the �xed boundary data).
[11,5] In this case the full action would be S � S1�S0 . We brie
y consider the more general

action later in the appendix. Also we could add to the action a matter contribution Sm .

Most of our work in this section, x3 on quasilocal energy-momentum, would be una�ected
by an Sm contribution to the action, as long as the matter �elds were minimally coupled.

However, an Sm contribution would a�ect the following sections devoted to the canonical
reduction. Therefore, for the sake of simplicity we do not consider an Sm further. More

comments on the notation will follow below when it is appropriate.

3Such corner terms where �rst considered for four-dimensional gravity in Refs. [9].
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We are interested in spherically symmetric general relativity (SSGR). A suitable action

for SSGR is given by (3.1) with the choices y = 1, � = ��2. Note that for the SSGR

case, we set � equal to the dimensionful constant ��2. This gives our action the units of

action in four dimensions. The appendix shows that this action does indeed describe general

relativity with the ansatz of spherical symmetry (where the four dimensional action principle

is associated with the time history 4M of a spatial region bounded by concentric spheres).

In this correspondence with SSGR, it turns out that the radius of a round sphere is given

by

R =

s
A

4�
=
e��

�
; (3.4)

where A stands for the proper area of the sphere.

In this paper we also consider the CGHSW pure-dilaton model, which corresponds to

y = 2 and � taken to be a dimensionless positive number. The favorite choice in the literature

has been � = 2=�. But � remains essentially arbitrary. The arbitrariness of � for the

CGHSWmodel corresponds to the freedom to shift the dilaton by a constant �! ��log
p
�0

(a freedom not present for the SSGR action). Under such a shift, �! �00 = ��0. We would

actually prefer to set � = 2 for reasons which become clear later. Nevertheless, when dealing
with the CGHSW model, this paper leaves � arbitrary, so the reader can pick her or his
favorite convention. For the SSGR case the action S1 has dimensions of length-squared,

while for the CGHSW case the action S1 is dimensionless. This di�erence in units will
propagate throughout all the formulae to follow. However, the freedom of allowing � to be
either ��2 or a plain number will automatically keep track of the correct units for both cases.
The formulae to follow will depend on y and �, and the reader is free to choose whether
they hold for SSGR or the CGHSW theory. For the SSGR case (y = 1; � = ��2) all of our

conventions have been tailored to match those of KVK and LW.
The �rst step is to compute the variation of the action. One can compute the variation

in a number of ways, but the fastest way is the following. Note that R is a pure divergence.
Then use an integration by parts followed by an appeal to Stokes' theorem on the R term in
the action. This leads to cancelation of most of the boundary terms. This short calculation

and resulting form of the action are given later in the discussion in the text preceding (4.3).
Vary the resulting form of the action (4.3) to �nd

�S1 = (terms giving the equations of motion)

+
Z t00

t0
dr (P���+ P���) +

Z
�T

dt
�
�� �N� �N + �����

�
+ �e�2����

���B00

B0

; (3.5)

where we have de�ned the momenta

P� � �e�2�u[�] (3.6a)

P� � ��e�2�� (k + yu[�]) (3.6b)
�� �N � ��e�2��n[�] (3.6c)

��� � �e�2� �N
�
�#+ y�n[�]

�
; (3.6d)

Inspection of the variation of the action shows that P� is the gravitational momentum

conjugate to �. Likewise, �� �N is the gravitational momentum conjugate to �N , where now
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conjugacy is de�ned with respect to �T . The momentum conjugate to the dilaton �eld is

P�. Later in the discussion we will also address the interpretation of the momentum-like

quantity ���. Note that we could de�ne a momentum p� � �e�2�� in some sense conjugate

to � at the corners. However, we chose not to do this.4 If the corner terms in the action

(3.1) had not been included, then the variational principle would have featured �xation of

� on the corner points. Fixing � at the corners seems to be more in harmony with the fact

that � is �xed on �T , t0, and t00.
Our momenta P� and P� agree with the analysis of KVK. To see this take the SSGR

case and use the fact that PR = �(1=R)P�. One then �nds precisely Kucha�r's momenta,

P� = �N�1R
�
_R �N rR0

�
(3.7a)

PR = �N�1

h
R
�
_�� (�N r)0

�
+ �

�
_R �N rR0

�i
: (3.7b)

To get the last expression, we have used the de�nition (2.8) in the preliminary section to

�nd k = �(N�)�1
h
_�� (�N r)0

i
. (Note, however, that due to well-entrenched notation for

the dilaton, we unfortunately must break with the KVK convention of using Greek letters

only to represent spatial densities like �. Though represented by a Greek letter, the dilaton
� is a scalar and its momentum P� is a density.)

B. Quasilocal energy-momentum

As advertised, our variational principle has been rigged so that the induced metric
(�2;� �N2) and the dilaton � are �xed as boundary data. In particular, the lapse of proper

time between the initial and �nal slices is �xed in the variational principle, since this infor-
mation is encoded in the �T metric � �N2. This is the key feature exploited in the Brown-York
theory [5,6] of quasilocal stress-energy-momentum in general relativity. Following the basic
line of reasoning in this theory, we will \read o�" from the variation of the action what
geometric expressions play the role of quasilocal energy and momentum in our theory.

We begin by writing the boundary terms in the variation (3.5) of the action in the

following suggestive way:

�
�S1

�
@M

= �
Z t00

t0
dr (J��+ �T��)�

Z
�T

dt
�
�E� �N + �N �S��

�
+ �e�2����

���B00

B0

; (3.8)

where we have de�ned the scalars

�E � ��� �N = �e�2��n[�] (3.9a)

J � �P� = ��e�2�u[�] (3.9b)

�S � ����= �N = ��e�2�(�#+ y�n[�]) (3.9c)

T � �P�=� = �e�2�(k + yu[�]) : (3.9d)

4So, strictly speaking, when we pass to the canonical form of the theory, the action will be in a

mixed Hamiltonian-Lagrangian form.
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Do not confuse �S in the above set with the action functional S1 .

We interpret �E as the quasilocal energy associated with the �u observers at �T . In other

words, �E is the total energy of the gravitational and dilaton �elds which live on a spatial

slice �� which is orthogonal to �T . The slice �� has �u as its timelike normal at the boundary �T .5
Note that, when evaluated on solutions to the �eld equations, �E is minus the rate of change

of the classical action (or Hamilton-Jacobi principal function) with respect to a unit stretch

in �N , where �N controls the lapse of proper time between neighboring points on �T . [5] Our
notation is somewhat compact, as there are actually inner-boundary and outer-boundary

contributions to consider for �E. Indeed,

�E = �Ei + �Eo = �e�2� �n[�]
���Bo
Bi

(3.10)

is the total quasilocal energy. There are also inner and outer contributions to �S. It is easy to

obtain the expression for the quasilocal energy associated with the u observers at �T (which

is the energy of the spanning slice � to which u is the timelike normal). From the results of

Ref. [6], we know that we merely need to \unbar" the �E expression to �nd

E � �e�2� n[�] : (3.11)

Note that E depends on the canonical variables of the �, speci�cally � and �, so E is a

functional on the � phase space (as �E is a functional on the �� phase space). Though we
have not yet given an interpretation for �S, also de�ne its unbarred version

S � ��e�2� [�(a � n) + yn[�]] : (3.12)

Note that S does not depend solely on � Cauchy data, as it depends on the spacetime
acceleration a of u. So far the expression E is really the total energy Ei + Eo, and also
S = Si + So. However, it is more convenient to associate an E and S with each separate
boundary point of a particular slice. Therefore, often in the remainder of this work, and

depending on the context, the expressions for E (and �E) and S (and �S) are associated with

a single spacetime point. Furthermore, it proves useful in the next section to have an energy
expression for each point6 of �. However, we have a sign ambiguity, because each � point
could be viewed as an inner or an outer boundary point. For the sake of de�niteness, de�ne

E � �e�2�n[�] = �e�2��0=� : (3.13)

For some expressions, like E2, the sign ambiguity cancels, so we can use E2 or E2.

5Actually, �E is the energy associated with any slice in the equivalence class determined by this

condition. The slice �� can be \wiggled" in the interior as long as its ends remain clamped to the

boundary �T .

6Recall that the � points are spheres, at least in the SSGR case. So we are not really de�ning a

local energy, and certainly not a local energy density.
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We consider J to be a quasilocal momentum. Notice that on-shell J is minus the rate of

change of the Hamilton-Jacobi principle function with respect to a unit stretch in �, where

� controls the lapse of proper distance between neighboring radial leaves B of �. Such a

variation in the boundary data corresponds to a dilation of �. At a glance one sees that J

and T are also a functionals on the � phase space.

To sharpen our understandings of the quantities E, J , S, and T , let us examine the

correspondence of our work thus far with the theory of quasilocal stress-energy-momentum

for general relativity as laid out in Refs. [5,6,12]. These deal with the full theory, but we

may specialize their results to the case of spherical symmetry. Take our two-dimensional

metric gab from the preliminary section and adjoin to it the metric of a round sphere. The

result is the four-dimensional spherically symmetric metric

4g��dx
�dx� = �N2dt2 + �2 (dr +N rdt)

2
+R2

�
d�2 + sin2 �d�2

�
: (3.14)

Now every point B(r; t) of M is a round sphere of radius R(t; r). Therefore, our 1 + 1

spacetime region M has now been promoted to a four-dimensional time history 4M of a

three-dimensional spatial region which lies between concentric spheres. Slices � and sheets
�T now correspond to three-dimensional submanifolds of 4M. In particular, the boundary
elements �Ti and �To are now 2+1 hypersurfaces in 4M. Consider the timelike 2+1-dimensional
hypersheets T which are generated by the integral curves of the � normal u. Just like in the
1+ 1 scenario, these sheet may \emerge from" or \crash into" the actual boundary �T . Pick
one such sheet which intersects the spatial boundary. By construction the normal n of T as
embedded in 4M is orthogonal to u. Now, in the notation of Ref. [5,6] k represents the trace

of the extrinsic curvature of a two surface (in the present case a round sphere) as embedded
in a three-dimensional spacelike slice �. This is not our k (block-Roman script) de�ned in
the preliminary section. Be careful to make the distinction between k and k. Also, as in
Ref. [6], we use ` to represent the trace of the extrinsic curvature of same round sphere as
embedded in a T sheet. Quick calculations show that

k = �2(R�)�1R0 = 2n[�]

(3.15)

` = �2(RN)�1( _R �N rR0) = 2u[�] ;

where we have used the correspondence (3:4) and assumed that the round sphere of interest
is the outer one. Moreover, for the four-dimensional scenario it is straightforward to de�ne
the acceleration components (a � n) and (b � u). With the ansatz of spherical symmetry, the

four-dimensional expressions for (a � n) and (b � u) are the obvious generalizations of the
formulas for (a � n) and (b � u) given for the two-dimensional scenario in the preliminary

section.

Now simply divide E, J , S, and T by (4��)e�2� (this is the spherical area for the SSGR
case). This gives the following \surface densities":

" � (4��)�1e2�E = (8�)�1k

j` � (4��)�1e2�J = �(8�)�1`
s � (4��)�1e2�S = (8�)�1 (2a � n� yk)

t � (4��)�1e2�T = (8�)�1 (2b � u+ y`) : (3.16)
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The expressions on the right-hand side may now be interpreted as four-dimensional quan-

tities. Note that for both of the models that we are considering in this paper the " and j`
expressions7 match the four-dimensional expressions for " and j` given in Refs. [5,6,12]. As

expected, for the SSGR case, our s and t match saa, the trace of the spatial stress tensor

sab, and taa, the trace of the temporal stress tensor tab, of those references. One should note

that the indices on sab and tab are associated with the round sphere not our two-dimensional

spacetime M. The surface density sab describes the 
ux of the a component of momentum

in the b direction. [5] Our S may be thought of as the integrated trace of this spatial stress

tensor.

C. Boost relations and invariants

Return to the two-dimensional scenario and consider again the clamped spacelike slice ��

which has a normal vector �eld which agrees with the normal �u on the boundary �T (again,

de�ning an equivalence class of such slices). Clearly the Eulerian observers of �� at �T coincide

with the natural observers in the boundary. We may de�ne a set of quasilocal quantities for

these observers,

�E = �e�2��n[�] (3.17a)
�J = ��e�2��u[�] (3.17b)
�S = ��e�2�(�#+ y�n[�]) (3.17c)
�T = �e�2�(�k + y�u[�]) : (3.17d)

Notice that the set �E, �J, �S, and �T has the same dependence on the Cauchy data of �� as
the set E, J , S has on the Cauchy data of � (but both S and �S do not depend on Cauchy
data alone). Now the slice � need not be clamped to the boundary �T in our formalism.
Hence, in general � and �� are di�erent slices which intersect at the same boundary point of
interest. We will refer to a switch of the spatial slice spanning a particular boundary point

as a generalized boost or simply a boost. Properly speaking, a generalized boost is a switch
of the equivalence class of spanning slices. The behavior of the quasilocal quantities under
boosts,

�E = 
E � v
J (3.18a)
�J = 
J � v
E (3.18b)
�S = 
S � v
T + �e�2��u[�] (3.18c)
�T = 
T � v
S � �e�2��n[�] : (3.18d)

follows immediately from the boost relations (2.7) and the splittings (2.12).

7We write j`, because in the four-dimensional case one deals with a momentum surface density

jk which may have components tangential to the generic two-surface B of interest. In this case

j` = (j � n), where n is the normal of B as embedded in �.
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Clearly the expression �E2 + J2 is invariant under boosts.8 We may multiply it by

any function of the dilaton �eld or add to it any function of the dilaton �eld and retain

a boost-invariant expression. Therefore, it is not completely unnatural to introduce the

invariant

M = (2��)�1ey�
h
�E2 + J2 + (��)2 exp [�2y�]

i
: (3.19)

Note that M has units of length for the SSGR case and units of inverse length for the

CGHSW case. It turns out that on-shell (on solutions to the �eld equations) M is a com-

pletely conserved quantity (constant in time and space). Moreover, for the case of SSGR we

�nd that M = MS, where MS is Kucha�r's canonical expression for the Schwarzschild mass

parameter,

MS =
P 2

�

2R
� R

2

 
R0

�

!
2

+
R

2
: (3.20)

From the four-dimensional spacetime perspective, the expression for MS corresponds to

several mass de�nitions in general relativity, when spherical symmetry is assumed. One is
the Hawking mass [13,14]

MH =
1

8�

s
A

16�

Z
B
d2x

p
�
h
�1

2
(k2 � `2) + 2R

i
; (3.21)

where 2R is the scalar curvature of the two-surface B and the boost-invariant combination
1

2
(k2 � `2) is more often written as a product of spin coe�cients. The factor A is the area

of B which is included so that the whole expression has units of energy. With the ansatz
of spherical symmetry, the Hawking mass coincides9 with the Ashtekar-Hansen expression,
[14,15]

MAH =
1

8�

s
A

16�

Z
B
d2x

p
�������C���� ; (3.22)

where C���� is the Weyl tensor of (3.14), and here the two-metric ��� = 4g�� � n�n� +
u�u� serves as the projection operator into the sphere. We stress that, assuming spherical
symmetry, MH and MAH correspond to Kucha�r's MS even o�-shell. They can be expressed

purely in terms of the canonical data of spacelike slices.10 For Schwarzschild both MH

8In accord with the comment given before (3.13), here we are working at a singleM point.

9See Ref. [12] for the details.

10This is not true of, say, the Komar integral [16]. The Komar integral for round spheres in

the Schwarzschild geometry yields the mass parameter (the on-shell value of MS), but is not

equivalent to MS as a canonical expression. Indeed, the Komar integral depends on the lapse

function associated with the static-time slices.
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and MAH yield the on-shell value of MS even for �nite two-spheres, but in general one must

consider the suitable asymptotic limit to get the ADM mass. For general closed two surfaces

in general spacetimes, the Hawking and Ashtekar-Hansen expressions can be \built" as a

combination of quasilocal boost invariants. [6,12]

For the pure dilaton case set MW = 2M=�. By expressing MW in covariant form,

MW = ��1e�2�
�
�2 � gab@a�@b�

�
; (3.23)

we see that it is the \local mass" of Tada and Uehara. [17] Such a quantity was also considered

by Frolov in Ref. [18]. With an argument originally given by KVK for the Schwarzschild

case, the appendix shows thatMW is the canonical expression for the mass parameter of the

Witten black hole. The appendix also shows that the ADM energy [19] at spatial in�nity

(associated with the preferred static-time slices) of the Witten black hole is the on-shell

value of M . This is the reason we would prefer to set � = 2.

IV. CANONICAL THEORY

This section is devoted to the canonical form of the theory. We �rst sketch the Legendre
transformation which yields the canonical form of the action. We then vary the canonical
action, paying strict attention to all boundary terms. Finally, we consider the canonical
transformation of KVK and write down a new-canonical-variable version of the action (3.1)
which is particularly amenable to canonical reduction.

A. Form of the canonical action

Passage to the canonical form of the action (3.1) demands that we write the action in
1 + 1 form as a preliminary step. This is easily done with three ingredients. The �rst is the

splitting result (2.12b) for the �T extrinsic curvature �#. The second is the identity

2ygab@a�@b� = 2y

2
4�

 
_�

N

!2
+ 2N r

 
_��0

N2

!
+

 
�0

�


!235 ; (4.1)

where 
 is the relativistic factor of the preliminary section. The third and �nal ingredient is
the realization that for our two dimensional spacetime the Ricci scalar is a pure divergence,

R = �2rb

h
kub + (a � n)nb

i
: (4.2)

Using these three ingredients, one can quickly cast (3.1) into the form

S1 = 1

4
�

Z
M

d2xN�e�2�X +
Z
�T

dt �e�2�� _� ; (4.3)

where X is the expression
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X = � 4

N�

"
�k

�
_��N r�0

�
+
N 0�0

�

#

+2y

2
4�

 
_�

N

!2
+ 2N r

 
_��0

N2

!
+

 
�0

�


!
2
3
5+ 2�2y exp [(2� y)2�] : (4.4)

With these formulas it is not extremely di�cult to express the canonical action as follows:

S1 =
Z
M

d2x
�
P� _� + P� _� �NH�N rHr

�
+
Z
�T

dt
�
�e�2�� _�� �N �E

�
; (4.5)

where here �E is shorthand for 
E � v
J . It is important to realize that in the canonical

picture the equation �E = �e�2��n[�] is not necessarily valid, for equality implicitly assumes

the canonical equation of motion P� = �e�2�u[�]. Respectively, the Hamiltonian constraint

and the momentum constraint have the form

H = ��1e2�
h
P�P� +

1

2
y�(P�)

2

i

+�e�2�
"�
2� 1

2
y
� �02
�
� �00

�
+
�0�0

�2
� 1

2
�2�y exp [(2� y)2�]

#
(4.6a)

Hr = P��
0 � �P 0

�
: (4.6b)

Again, for the case of SSGR our results match those of KVK and LW. Notice that it is P�
which appears di�erentiated in the momentum constraint Hr. This is to be expected, as �
is a scalar density.

B. Variation of the canonical action

Straightforward but fairly tedious manipulations establish that the variation of the canon-
ical action is

�S1 = (terms which enforce the constraints and give the

Hamiltonian equations of motion) +
Z t00

t0
dr (P���+ P���)

�
Z
�T

dt
h
�E� �N + �N �S���

�
�N �J + �e�2� _�

�
��
i
+ �e�2����

���B00

B0

; (4.6)

where here �E, �J , and �S are shorthand for the expressions

�E = 
E � v
J (4.7a)

�J = 
J � v
E (4.7b)

�S = 
S � v
T + �e�2��u[�] : (4.7c)

As mentioned, one should be careful, for while E, J , S, and T are built from the canonical
variables (�; P�; �; P�) in the same way as before, now the momenta P� and P� need not

have the forms given in (3.6) (which are canonical equations of motion). The term which
appears multiplied by the variation �� vanishes when the canonical equation of motion for

P� holds. Therefore, � is not a quantity which is held �xed in our variational principle.
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C. Canonical Transformation

In this subsection we perform Kucha�r's canonical transformation on the phase-space

pairs (�; P�; �; P�). In order to grasp the underlying hyperbolic geometry of this canonical

transformation, we �rst need to collect a few results and observations.

Consider a black-hole solution which extremizes the action (3.1) (either a Schwarzschild

black hole or a Witten black hole, depending on whether y is 1 or 2). Associated with this

solution, there is a preferred family of static-time slices, the collection of constant-Killing-

time level surfaces. For the Schwarzschild-black-hole case let T (t; r) denote the Killing

time, and for the Witten-black-hole case let � (t; r) denote the Killing time. Now, given a

particular M point B, we may interpret it as a boundary point of the static-time slice ~�

which contains it. Our construction de�nes the rest frame (~u; ~n) at B, where ~u is the normal

of ~� as embedded inM and ~n is the normal of B as embedded in ~�. If B is also considered

to be a point of the boundary �T , then in general ~� does not de�ne the same frame at B as

the slice � or the slice �� considered before. We know how to compute the energy ~E and

momentum ~J of the bounded static-time slice ~�,

~E = �e�2�~n[�]
~J = ��e�2�~u[�] : (4.7)

Clearly ~E and ~J depend on the Cauchy data of ~� in the same way that E and J depend on
the Cauchy data of �.

Now, it is a fact that ~J = 0, which is why we refer to (~u; ~n) as the rest frame at B. The
existence of the rest frame at B leads to a remarkable fact: at B the parameter ' associated

with the boost from the frame (u; n) de�ned by � to the rest frame (~u; ~n) is determined by

the canonical variables of �.11 Indeed, with w � J=E the boost from the � frame to the
rest frame is parameterized by

' � 1

2
log

����1 + w

1 � w

���� = 1

2
log

����E + J

E � J

���� : (4.8)

Notice that ~u =  u+ w n with  = (1 � w2)�1=2. At this stage we have a sign ambiguity
in our expressions, since we did not say whether B is an inner or an outer boundary point.
For the sake of de�niteness in what follows, we often want to assume that B is taken as an
outer boundary point and make this distinction notationally. Therefore, we use E, de�ned

before in (3.13), and also w = J=E which de�nes '' � 1

2
log j(1 + w)=(1 � w)j. Notice that

the sign ambiguities cancel in the expressions E' = E'' and E2 = E
2.

Since we have a canonical expression for '', it is easy to write down a new set of constraints

which generate unit displacements with respect to the static-time slices. Moreover, the new
constraints will depend only on the canonical variables of �, so we can consider them o�
the constraint surface in phase space (in which case the canonical data of � does not obey

the � constraints). Indeed, de�ne

11Which need to be known only in a tiny neighborhood of B.
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H =  H+ w (Hr=�) (4.9a)

H` =  (Hr=�) + w H : (4.9b)

Note that, for instance, H is not really of the form �(~u � u)H + (~u � n)(Hr=�) when the

canonical variables do not obey the � constraints. However, when computing a Poisson

bracket fG;Hg, where G is a functional of the canonical variables, one �nds that all the

brackets fG;wg which arise come multiplied by either by factor of H or Hr. Therefore,

on-shell H generates unit evolution normal to the static-time slices.

De�ne the new canonical variables in terms of the old ones as follows:

M = 1

2
��e�y�(1 � F ) (4.10a)

PM = (��)�1ey�F�1�P� (4.10b)

	 = � (4.10c)

P	 = P� + 1

2
y(1 + F�1)�P� + �e�2�''0 ; (4.10d)

whereM is the boost invariant (3.19) and in terms of the old variables F and '' are shorthand
for

F = (��)�2 exp [(y � 2)2�]
h
(��0=�)2 � (e2�P�)

2

i
(4.11a)

'' = 1

2
log

������e
�2��0 � �P�

�e�2��0 + �P�

����� : (4.11b)

Notice that '' = 1

2
log jF�=F+j, where

F� = (��)�1ey�(E� J) : (4.12)

Evidently then, another expression for F of key importance is

F = F+F� = (��)�2ey2�
�
E2 � J2

�
: (4.13)

For the SSGR case e�	 = �R and P	 = �RPR, in the notation of KVK and LW. Also for
this case, one �nds that PM = �T 0, because as shown in KVK the canonical expression
for (minus) the radial derivative of the Killing time is given by �T 0 = (RF )�1�P�. The

situation is the same for the CGHSW model, as in this case PM = �� 0. We show in the

appendix that the canonical expression for (minus) the radial derivative of the Witten-

black-hole Killing time is �� 0 = (��)�1e2�F�1�P�. One may prove that the transformation
(�; P�; �; P�) ! (M;PM ; 	; P	) is canonical for our boundary conditions by verifying the
identity

P���+ P���� PM�M � P	�	 = � [�(�J + E')]�
�
�e�2���''

�
0

; (4.14)

which upon integration over r shows that the di�erence between the old Liouville form and

the new Liouville is an exact form. Hence, the transformation is canonical.
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Recall that for simplicity we wish to restrict our attention to the right-static region of

the relevant Kruskal diagram. Now, in fact, for both SSGR and the CGHSW model F is the

canonical expression for ~N2, where ~N is the lapse function associated with the static-time

slices. On-shell, the event horizon of a particular black-hole solution is the locus of points

determined by F = 0. We may ensure that we are working exclusively in a static region of

the Kruskal diagram by choosing our boundary conditions appropriately and by excluding

solutions for which F = 0 somewhere onM. Where F is nonzero, the above transformation

may be inverted,

� =
h
��2F�1(	0)2 exp [(y � 2)2	]� F (PM)

2

i
1=2

(4.15a)

P� =
��e�y	FPM

[��2F�1(	0)2 exp [(y � 2)2	]� F (PM)2]
1=2

(4.15b)

� = 	 (4.15c)

P� = P	 � 1

2
��ye�y	PM (1 + F )� �e�2	''0 ; (4.15d)

where in terms of the new variables F and '' are shorthand for

F = 1� 2(��)�1ey	M (4.16a)

'' = 1

2
log

�����	
0 � � exp [(2 � y)	]FPM

	0 + � exp [(2� y)	]FPM

����� : (4.16b)

As mentioned in the introduction, KVK considers the canonical transformation and its
inverse in all regions of the Kruskal diagram for SSGR. Moreover, this reference provides
a detailed treatment of the (singular) behavior of the transformation at the horizon. We

expect that a similar treatment with essentially the same results can be carried out for the
CGHSW case.

As shown in KVK for the SSGR case, the payo� obtained by using the new variables
comes when considering the constraints (4.6). Since on solutions to the constraints M is
a constant, one knows that M 0 must be a sum of constraints. Indeed, direct calculation

establishes that

M 0 = F 1=2
H : (4.17)

Since F 1=2 is the lapse ~N , we see that M 0 is the generator of Killing-time evolution. It is

nice to learn that

P	 = ��1 exp [(y � 2)�]F�1=2
H` (4.18)

is also a sum of constraints and so weakly vanishes. The new canonical variables are related

to the constraints associated with the static-time slices in a very simply way: H = F�1=2M 0

and H` = � exp [(2� y)	]F 1=2P	. Using these relations, we may write the old constraints
in terms of the new variables as
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H =  H� w H`

Hr = �( H` � w H) ; (4.19)

where here � is given in (4.15a) and w must be expressed in terms of the new variables.

With the list (4.15), it is not hard to show that

w = ��(	0)�1 exp [(2 � y)	]FPM : (4.20)

It is now straightforward, if tedious, to express the old constraints in terms of the new

variables,

H =
��1F�1	0 exp [(y � 2)	]M 0 + �F exp [(2 � y)	]P	PM

[��2F�1(	0)2 exp [(y � 2)2	]� F (PM)2]
1=2

(4.21)

Hr = PMM
0 + P		

0 :

As noted in KVK, in terms of the new variables it is relatively simple to show that the

Poisson bracket of M with either H or Hr vanishes weakly.

D. Canonical reduction

The goal of this subsection is to use the new canonical variables to �nd a reduced action
principle which -in a certain sense- corresponds to the canonical action (4.5). However, we
will be adding boundary terms to (4.5) before the reduction is made, so we should clearly
state what we have in mind to begin with and why. Several aspects of the path-integral

formulation of gravitational thermodynamics motivate �xation of �N and � on the timelike
boundary �T as the features of central importance which need to be preserved as we modify
the original action (4.5). In path-integral expressions for gravitational partition functions,
the sum over histories includes only spacetimes for which the initial and �nal slices are
identi�ed. In this scenario the gauge-invariant information of �N (the lapse of proper time

between the identi�ed initial slice t0 and �nal slice t00) is essentially the inverse temperature,
which is �xed in the canonical ensemble. [4] Regarding the �xation of the dilaton � on
the boundary �T , from a four-dimensional perspective this feature allows the area of the
boundary of the system to be �xed as a boundary condition.

In what follows we modify our original canonical action (4.5) in several steps. Each step

is -at least heuristically- justi�ed. The result will be an action S1
z
(for the SSGR case this

action is closely related to one considered by LW) which is particularly amenable to canonical

reduction via the new variables. Moreover, as we will explicitly demonstrate, the new action

S1
z
retains �xation of �N and � on �T , important for the above mentioned reasons, as features

of its associated variational principle. Our analysis provides some conceptual justi�cation
for several technical steps taken in LW.

Let us go through the steps of modifying S1 . We know from (4.14) that addition of the

boundary terms

�![�; P�;�]jt
00

t0 =
Z t00

t0
dr� (J � E') (4.22)
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to the canonical action (4.5) gives the new action

S1
y
�
Z
M

d2x
�
PM _M + P	 _	�NH�N rHr

�
+
Z
�T

dt
�
�e�2	� _	� �N �E

�
; (4.23)

where here we consider all the quantities as expressed in terms of the old variables. The

vanishing of the original set of constraints is equivalent to the vanishing of M 0 and P	. To

take advantage of this fact, re-express the constraint terms in the action as NH +N rHr =

NMM 0 +N	P	, where the new Lagrange multipliers are

NM = F�1=2 ( N � w �N r) (4.24a)

N	 = � exp [(2� y)	]F 1=2 ( �N r � w N) : (4.24b)

At this stage the new Lagrange multipliers still depend on the old multipliers and the old

canonical variables. In particular, note that in terms of the old variables

N	 = ���1e2� �N (
J � v
E) ; (4.25)

where we have used the expression (4.13) and the fact that w = J=E. With the canonical

equation of motion for P�, one can show that N	 = ���1e2� �N �J = _�.
Had we merely passed to the new canonical variables, without rede�ning the Lagrange

multipliers, the variational principle associated with (4.23) would have featured �xation of
�N and � on �T automatically. However, with the Lagrange multipliers rede�ned (and in a
way which absorbs some of the canonical variables) all bets are o�. We must cleverly choose

the appropriate �T boundary term for the new-variable version of the action. In passing
from the old constraints toM 0 and P	, we are e�ectively performing the Lorentz boost from
the frame (u; n) to the rest frame (~u; ~n) at each point on �. A point-wise boost12 has been
performed on the old constraints and Lagrange multipliers. However, we have not included
the boundary term in the boost. It seems that the correct way to incorporate the e�ect of

the boost into the boundary term is to reference the existing boost parameter � against the
parameter ' associated with the boost to the rest frame. This is achieved by adding a �T
boundary term to the action S1

y
, with the result

S1
z
�
Z
M

d2x
�
PM _M + P	 _	�NMM 0 �N	P	

�
+
Z
�T

dt
h
�e�2	(� � ') _	� �N �E

i
; (4.26)

On-shell, the boost parameter in the new action

� � � � ' = �1

2
log

�����
�E + �J
�E � �J

����� (4.27)

is associated with the local boost between the rest frame (~u; ~n) and the boundary frame
(�u; �n). At this stage, the terms �E and �J are still shorthand expressions for 
E � v
J and


J � v
E, respectively.

12Or, depending on the viewpoint, a sphere-wise boost.
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We now wish to express all terms in the action S1
z
solely in terms of the new variables

and freely variable NM and N	. Using the expressions (4.15), one can easily express the

quasilocal energy and momentum in terms of the new variables,

E =
��e�2		0

[��2F�1(	0)2 exp [(y � 2)2	]� F (PM)2]
1=2

(4.28a)

J =
���e�y	FPM

[��2F�1(	0)2 exp [(y � 2)2	]� F (PM)2]
1=2

; (4.28b)

where the factor � � (�n � �n) takes care of the appropriate sign on each of the boundary

elements. Moreover, we must now regard N and N r (which along with � are hidden in

the v's and 
's which are in turn hidden in �) as depending on the new variables. It is not

di�cult to invert the relations (4.24) to get the needed expressions. Also, a short calculation

shows that the boundary lapse �N = N=
 has a fairly nice expression in terms of the new

variables,

�N2 = F
�
NM

�2 � ��2 exp [(y � 2)2	]F�1
�
N	

�2
: (4.29)

However, the situation at hand remains quite problematic. We would like to use the fact
that M 0 = 0 to de�ne a radially independent m(t) = M(t) with conjugate momentum
p(t) =

R
�
drPM (t; r). Since we have seen that PM is minus the radial derivative of the Killing

time, the momentum p would then be the di�erence between the Killing-time values for the
boundary points Bi and Bo. Indeed, our canonical-reduction goal is to insert the solutions

of the constraints into the action to �nd a reduced action which is expressed in terms of the
pair (m;p). However, PM appears in the �T boundary term explicitly. Therefore, even if we
perform the r integration in the action to de�ne p, the boundary terms still contain factors
of PM .

13

A solution to the problem at hand is to make an appeal to the equations of motion. For

the moment, let us go back to considering the action S1
z
as depending on the old variables.

Notice that using the canonical equation of motion for P�, one may write

�J = ��e�2�( _�= �N ) (4.30a)

�E = ���e�2�
q
�2 exp [(2� y)2�]F + ( _�= �N )2 ; (4.30b)

where we have appealed to the form (4.13) for F and again used � to take care of the
appropriate sign for each boundary element. Note that by convention we take the positive

square root. Since for a classical solution the dilaton is a \bad" radial coordinate in the sense

13The reader might suspect that this problem was introduced when we performed the heuristically-

justi�ed reference � ! (��') to get the action S1
z
. But the boundary term in the action S1

y
su�ers

from the same problem. Indeed, � is built from v which is in turn built from �, and hence in term

of the new variables � depends on PM .
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that �0 < 0, our unreferenced energy expression (3.13) is negative, and likewise the barred

version of this expression is negative. This is why the minus sign has been introduced in

(4.30b). The expression for the quasilocal energy with the 
at-space reference contribution

is considered in the appendix and at length in Ref. [5]. It is trivial to write these new

expressions for �E and �J in terms of the new variables. Fortunately, these expressions have

no dependence on PM . Using these expressions instead of those in (4.28), we �nd that in

terms of the new variables our action is

S1
z
=
Z
M

d2x
�
PM _M + P	 _	�NMM 0 �N	P	

�
+
Z
�T

dt
�
�e�2	� _	� �N �E

�
; (4.31)

where �N �E = ���e�2	
q
�2 exp [(2 � y)2	] �N2F + ( _	)2, with �N2 shorthand for the expres-

sion (4.29) and F shorthand for expression (4.16a). Also, now the parameter specifying the

boost between the boundary and rest frames takes the form

� = �1

2
log

������
q
�2 exp [(2 � y)2	] �N2F + ( _	)2 + � _	q
�2 exp [(2� y)2	] �N2F + ( _	)2 � � _	

������ : (4.32)

Now let us verify that the variational principle associated with the above action possesses
the features we demand. The constraints and equations of motion are

M 0 = 0 (4.33a)

P	 = 0 (4.33b)
_M = 0 (4.33c)
_PM = NM (4.33d)
_	 = N	 (4.33e)
_P	 = 0 : (4.33f)

In terms of the old variables, we have already seen that the equation (4.33e) holds when the
canonical equation of motion for P� is assumed. Upon variation of the action, we �nd the
boundary terms�

�S1
z

�
@M

=Z t00

t0
dt (PM�M + P	�	) +

Z
�T

dt
�
�� �N� �N + ��	�	+ ��M�M

�
+ �e�2	��	

���B00

B0

; (4.34)

where now the �T momenta are the following:

� �E = �� �N = ��e�2	
q
�2 exp [(2 � y)2	]F + ( _	= �N)2 (4.35a)

��	 = 1

2

�N
h
y �E(1 + F�1)� 2�e�2	�u[�]

i
(4.35b)

��M = ��NM + (��)�1ey	F�1 �N �E : (4.35c)

Again, � = (�n � �n) takes care of the correct sign for each boundary element. Note that ��	 is
not the same as the ��� in the list (3.6). Although the �� �N found here is not the expression

(3.6c), it agrees with this expression on-shell. Recalling that �N2 stands for (4.29), one �nds
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that ��M vanishes when the equation of motion (4.33e) holds. Therefore,M need not be held

�xed on �T in the variational principle associated with S1
z
, as the equations of motion ensure

that the boundary term with ��M vanishes for arbitrary variations �M about a classical

solution.

The reduced action Iz, expressed in terms of m and p de�ned earlier, is obtained by

solving the constraints and inserting these solutions back into the action Sz. From the result

(4.34) for the variation of the action S1
z
, we know that the reduced action,

I1
z
=
Z t00

t0
dtp _m+

Z
�T

dt �e�2	
�
�
q
�2 exp [(2� y)2	] �N2F + ( _	)2

�1

2

_	 log

������
q
�2 exp [(2 � y)2	] �N2F + ( _	)2 + � _	q
�2 exp [(2� y)2	] �N2F + ( _	)2 � � _	

������
3
5 ; (4.36)

possesses the variational principle we desire. We leave the derivation of �Iz as a simple

exercise for the interested reader. In the reduced action �N is positive and independent, and

F = 1 � 2(��)�1ey	m. Also, in the expression for Iz the t
0 and t00 represent integration

parameters rather than spacelike slices as they did before.

V. THE THERMODYNAMICAL ACTION

For both the Schwarzschild and the Witten black hole we are interested in applying
the canonical action principle to a static exterior region with spatial boundary (including
the bifurcation point) of the relevant Kruskal diagram. Such an application of the action
principle is the appropriate one when studying the equilibrium thermodynamics of black

holes. [4] In such a scenario, with the covariant form of the action there is no inner boundary,
since the bifurcation point is a set of measure zero in the integration overM. Nevertheless,
in the canonical picture the bifurcation point is a boundary point of every spacelike slice,
which implies that the canonical coordinates must obey certain fall-o� conditions as the
bifurcation point is approached. Moreover, in the thermodynamical paradigm, when the

initial and �nal spacelike slice are identi�ed, one must worry about regularity conditions at
the bifurcation point which ensure that the geometry is smooth. [11,4,20] To handle these
issues, we will use a technique due to Brown and York. [21] The basic idea is to work with an
inner boundary but with boundary conditions which e�ectively seal it. The main ingredient
in this technique is a new action functional, which di�ers from (3.1) by boundary terms. The

purpose of this section is to introduce this new action principle and to study its canonical

reduction via the new canonical variables.

A. Alternative canonical action principle

Starting with the canonical action (4.5), we de�ne the new action

S1
�
� S1 � 1

2

Z
�Ti

dt �N �S + 1

2
�e�2��

���B00

i

B0

i

: (5.1)
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Note that only an inner boundary term has been added to the original action. It is easy to

show that the canonical form of S1
�
has the boundary terms

�
S1
�

�
@M

=
Z
�To

dt
h
�e�2�� _� � �N �E

i
+
Z
�Ti

dt
h
1

2
�e�2� _� � �N

�
�E + 1

2

�S
�i
: (5.2)

Using the expressions (4.7a) and (4.7c), one �nds that the inner boundary term is

�
S1
�

�
�Ti

= �
Z
�Ti

dtN
h
E � vJ + 1

2
(S � vT )

i
: (5.3)

It is also relatively straightforward to compute the variation of S1
�
. With the result (4.6) it

follows that the �T and corner contributions to the variation of S1
�
are

(�S1
�
) �T ;B00;B0 =

�
Z
�To

dt
h
�E� �N + �N �S���

�
�N �J + �e�2� _�

�
��
i
+ �e�2����

���B00

o

B0

o

�
Z
�Ti

dt
h
�E� �N + 1

2
e�2��

�
e2� �N �S

�
�
�
�N �J + �e�2� _�

�
��
i
+ 1

2
�e�2���

���B00

i

B0

i

: (5.4)

We describe the boundary conditions at the inner boundary as completely open because
�N and e2� �S are held �xed, as opposed to closed or microcanonical boundary conditions
characterized by �xation of the energy �E and �xation of � (e�ectively the surface area).
[21] With some work and the formulas in (4.7), one can show that the inner-boundary and

inner-corner-point contributions in the above variation may be combined into the expression

(�S1
�
) �Ti;B00

i
;B0

i

= �
Z
�Ti

dt
h
(E � vJ) �N + 1

2
e�2��

�
Ne2�S � vNe2�T

�
� (N=
2)J��

i
: (5.5)

Now we introduce fall-o� conditions on the �elds which seal the inner boundary. What
we have in mind is a general foliation of our spatially bounded static region M. All of

the spatial slices meet at the bifurcation point, but otherwise are essentially arbitrary. Our
phase space is the set of �elds (�; P�; �; P�) with the appropriate fall-o� conditions near
the bifurcation point. The needed fall-o� conditions have already been given in LW for the
speci�c case of the Schwarzschild geometry. For convenience and without loss of generality,
take the inner boundary, the bifurcation point, to be located at ri = 0 and the outer
boundary to be located at ro = 1. The boundary conditions given in LW are the following:

�(t; r) = �0(t) +O(r2) (5.6a)

�(t; r) = �0(t) + �2(t)r
2 +O(r4) (5.6b)

P�(t; r) = O(r3) (5.6c)

P�(t; r) = O(r) (5.6d)

N(t; r) = N1(t)r +O(r3) (5.6e)

N r(t; r) = N r
1
(t)r +O(r3) ; (5.6f)

where O(rn) stands for a term whose magnitude as r ! 0 is bounded by rn times a con-

stant. Also, as r ! 0, the k'th derivative of such a term is similarly bounded by rn�k times
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a constant for 1 � k � n. Note that the time development at the inner boundary has

been arrested as the lapse vanishes there. In e�ect these boundary conditions seal the inner

boundary. One can show that these boundary conditions are consistent with the equations

of motion. In other words, the Hamiltonian evolution preserves the above boundary condi-

tions, provided that the initial data obeys both the above set of fall-o� conditions and the

constraints (4.6) on the initial spacelike slice � and provided that the lapse and shift also

obey the above fall-o� conditions.14 Moreover, the dynamical equation for � and the above

fall-o� conditions imply that _�0 = 0. Imposition of the Hamiltonian constraint (4.6a) as

r! 0 yields the relation

(�0)
2 = �4y�1��2�2 exp [(y � 2)2�0] ; (5.7)

which shows that �2 is negative for classical solutions. Let us quickly compare this result

with the Schwarzschild result found in LW. Setting R(t; r) = R0(t) + R2(t)r
2 + O(r4) near

the bifurcation point, one �nds that �R0 = e��0 and �R2 = ��2 e
��0 . Therefore, for the

SSGR case the above expression is (�0)
2 = 4R0R2, which is the LW result.

Application of the fall-o� conditions (5.6) to the inner boundary term (5.3) shows that

now the new action (5.1) has the following form:

S1
�
=
Z
M

d2x
�
P� _� + P� _��NH�N rHr

�

+
Z
�To

dt
�
�e�2�� _�� �N �E

�
+ 1

2

Z t00

t0
dt �e�2�(N 0=�)

���
r=0

; (5.8)

where in the last integral t0 and t00 now represent integration parameters and not manifolds as
they have before. We refer to (5.8) as the thermodynamical action because of its importance
in the path-integral formulation of gravitational thermodynamics. This is the appropriate
action with which to study the canonical ensemble for spherically symmetric black holes. [4]

Using (5.5) in tandem with the fall-o� conditions (5.6), one �nds the following boundary
terms in the variation of the thermodynamical action:

(�S1
�
) �T ;B00;B0 = 1

2

Z t00

t0
dt �e�2�� (N 0=�)

���
r=0

�
Z
�To

dt
h
�E� �N + �N �S���

�
�N �J + �e�2� _�

�
��
i
+ �e�2����

���B00

o

B0

o

:

(5.9)

For the y = 1 case this is precisely the action and variational principle considered in LW.

Notice that we have the same boundary conditions at the outer boundary as before: �N and �
are held �xed on this surface in the variational principle associated with (5.8). As spelled out

in LW, the quantity N 0=� which is �xed at the bifurcation point in the variational principle

has a direct physical interpretation. In fact, N 0=� is the time rate of change a certain boost
parameter. Each � slices de�nes a timelike normal u at the bifurcation point. As the �

slicing develops in time this vector is continuously boosted at the rate (N 0=�)jr=0 = N1=�0.

14Note that one must appeal to (5.7) when showing that the boundary conditions (5.6) are con-

sistent with the _P� equation of motion.
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B. Canonical reduction of the thermodynamical action

We want a new-variable version of the thermodynamical action which is amenable to

canonical reduction. From the work in x4 we already know how to modify/handle the

outer boundary term when passing to the new canonical variables. Except for a minor

di�erence, we will handle the outer boundary term in the thermodynamical action just like

in the previous section. Therefore, the last section has already addressed several of the

delicate issues concerning the canonical reduction of the thermodynamical action. However,

there is a new feature of the thermodynamical action which we need to worry about. This

new feature concerns the quantity N 0=� which is �xed at the bifurcation point. We have

already discussed why �xation of �N and � (now only at the outer boundary) are important

features of the variational principle. The boundary integral at the bifurcation point is also of

importance. Indeed, in the thermodynamical paradigm black-hole entropy arises from this

term. [4,20] For the Schwarzschild case LW has shown that for applications to gravitational

thermodynamics is is crucial to retain �xation of N 0=� at the bifurcation point when passing

to a new-variable version of the action. We also regard this feature of the action principle as

the feature of central importance which needs to be preserved. Though essentially reviewing

the work of LW, this subsection shows how the Louko-Whiting formalism extends to the
CGSHW pure-dilaton case. Therefore, our discussion has relevance to the thermodynamics
of pure-dilaton gravity.

Let us present the quantities with which we will construct a new-variable version of
the thermodynamical action. The new canonical variables are the same as before, since

the transformation (4.10) remains canonical with the boundary conditions adopted for the

thermodynamical action. As before, the term�
�
�e�2���''

�
0

in the identity (4.14) gives two
boundary terms. The one at the outer boundary vanishes as � is held �xed on this boundary

element. Moreover, '' vanishes as r ! 0 so the inner boundary term also vanishes. Hence,
upon integration (4.14) still shows that the di�erence between the old and new Liouville
forms is an exact form. The new shift N	 is again de�ned by (4.24b). However, following
Louko and Whiting, we de�ne a di�erent new lapse

N = �NM

�
yM

�

� 
��

2M

!
2=y

: (5.10)

Recall that M has units of length for the SSGR case and units of inverse length for the

CGHSW case. It is easy to see that NM is dimensionless for both cases, and, therefore, for
both cases N has units of inverse length. It turns out that this choice for the lapse must be
made in order to ensure that we retain �xation of the boost rate N 0=� at the bifurcation

point as feature of variational principle. In terms of N the boundary lapse is given by

�N2 =

 
�

yM

!
2 �

2M

��

�4=y
FN2 � ��2 exp [(y � 2)2	]F�1

�
N	

�2
: (5.11)

The fall-o� conditions (5.6) imply the following fall-o� conditions for the new variables:

M(t; r) = 1

2
�� exp [�y	0(t)] +M2(t)r

2 +O(r4) (5.12a)
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	(t; r) = 	0(t) + 	2r
2 +O(r4) (5.12b)

PM (t; r) = O(r) (5.12c)

P	(t; r) = O(r) (5.12d)

N(t; r) = N0(t) +O(r2) (5.12e)

N	(t; r) = N	

2
(t)r2 +O(r4) ; (5.12f)

where

	0 = �0 (5.13a)

	2 = �2 (5.13b)

M2 = �1

2
���2 exp(�y�0)

h
y + 4��2(�0)

�2�2 exp[(y � 2)2�0]
i

(5.13c)

N0 = �1

4
y�2N1�0(�2)

�1 exp [(2 � y)2�0] (5.13d)

N	

2
= 2�2N

r
1
: (5.13e)

We also have that

F = 4��2(�2)
2(�0)

�2 exp[(y � 2)2�0]r
2 +O(r4) : (5.13)

For the SSGR case these fall-o� results for the new variables match those given in LW.
Equation (5.7) implies that

(N 0=�)jr=0 = �1

4
y�2N1�0(�2)

�1 exp [(2� y)2�0] ; (5.14)

which in turn gives N0 = N1=�0. Hence, we want to ensure that the Lagrange multiplier N
is �xed at the bifurcation point in our new variational principle.

Let us now consider the new-variable version of the thermodynamical action and show
that it has the correct variational principle. We could write down a general action which
covers both the SSGR and CGSHW cases, but the expression is a bit unseemly. Therefore,

let us examine both cases separately. For the SSGR case we have

S1
�
�
Z
M

d2x
�
PM _M + PR _R+ 4NMM 0 �NRPR

�

+
Z t00

t0
dt 2M2

N

�����
r=0

+
Z
�To

dt
h
��R _R� �N �E

i
; (5.15)

with the boundary lapse given by

�N2 = 16M2FN2 � F�1

�
NR

�
2

: (5.16)

To get these expressions we have use the facts that e�	 = �R, P	 = �RPR, and N	 =
�NR=R (all in the notation of KVK and LW). Also, �E and � are still given by (4.30b) and

(4.32), respectively, but now one must express them in terms of R. This is precisely the

action considered in LW. For the CGHSW pure-dilaton model we �nd

S1
�
�
Z
M

d2x
h
PM _M + P	 _	 + ��1NM 0 �N	P	

i
Z t00

t0
dt��1MN

�����
r=0

+
Z
�To

dt
h
�e�2	� _	� �N �E

i
; (5.17)
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with

�N2 = ��2FN2 � ��2F�1

�
N	

�
2

: (5.18)

In contrast to the SSGR case, for the CGHSW model the Lagrange multipler NM jr=0 does
specify, apart only from a dimensionful constant, the boost rate of the � normal u at the

bifurcation point.

The variation of (5.15) has already been considered in LW, so we will only consider the

variation of (5.17). The equations of motion derived from (5.17) are the same as those given

in (4.33), except that now _PM = ���1N. Upon variation of the action (5.17), we �nd the

boundary terms

�
�S1

�

�
@M

=
Z t00

t0
dt (PM�M + P	�	) +

Z t00

t0
dt��1M�N

�����
r=0

+
Z
�To

dt
�
�� �N�

�N + ��	�	+ ��M�M
�
+ �e�2	��	

���B00

o

B0

o

: (5.19)

In the �rst integral t0 and t00 represent spacelike slices, while in the second integral they are
integration parameters. The �To momenta in (5.19) are essentially the same as the outer-
boundary ones in (4.35), except that now �N stands for (5.18) and the momenta ��M =
��1N + (��)�1ey	F�1 �N �E. Like before, plugging in the explicit formula (5.18) for �N2, one
�nds that ��M vanishes when the equation of motion _PM = ���1N holds. Therefore, M

need not be held �xed on �To in the variational principle associated with S1
�
. It is now

straightforward to pass to the reduced form of the thermodynamical action.

VI. DISCUSSION

We conclude with some comments concerning the possible extension of the KVK and
LW formalisms to other two-dimensional models of gravity. Recently, important progress
has been made in the �eld of two-dimensional gravity with the realization that a huge
class of two-dimensional models can be described within the framework of the so-called
Poisson-sigma models (PSM's) of Schaller and Strobl. [22] For all such models there exists

an absolutely conserved quantity C (referred to as a Casimir function in the Poisson-sigma
model language) which is analogous to our M expression (3.19), and recently Kummer and
Widerin have explored the relationship between the PSM C and notions of quasilocal energy
for such models. [23] Many of our results, especially those concerning our general treatment of

quasilocal energy-momentum, seem to extend to the general PSM formalism. In particular,

the absolutely conserved quantity C can be interpreted as a quasilocal boost invariant. [24]
Extension of the canonical-reduction method of KVK to PSM theory also seems possible,

though several technical di�culties lie in the way. For instance, one encounters an almost
limitless variety of singularity structures when considering the set of all PSM's. [25] For

SSGR the canonical transformation of KVK is singular at the horizon. Similar technical

di�culties are likely to surface when applying the KVK method to any two-dimensional
model. Since the collection of all possible Penrose diagrams obtainable from PSM's is so

large, it is questionable whether or not a fully uni�ed treatment for the canonical reduction
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of all PSMs is possible. On the other hand, the richness of singularity structures that PSM

gravitation o�ers provides a promising testing ground for gravitational thermodynamics.

The appropriate thermodynamical action, as expressed in the LW formalism, would be a

crucial ingredient in any study of PSM thermodynamics via reduced canonical variables.
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APPENDIX A: REDUCTION OF THE HILBERT ACTION WITH BOUNDARY

TERMS

Consider again the four-dimensional spacetime region 4M described in the last two para-

graphs of x3:B. The action functional associated with 4M is the standard Hilbert action,
complete with the TrK terms needed to ensure that the four-dimensional action principle
features �xation of the induced three-metric on all of the elements of the three-boundary
@4M. In this appendix we will insert the metric ansatz (3.14) into the four-dimensional
spacetime action and then integrate out the angular variables. This procedure will yield a

reduced action principle for the �elds gab and R (or equivalently �) which are de�ned on
the toy 1 + 1 dimensional spacetime described in the preliminary section. The variational
principle for the reduced action still features �xation of the induced metric on the boundary,
and the equations of motion derived from the reduced action are the Einstein equations with
ansatz of spherical symmetry.15

The four-dimensional spacetime action is [27,9]

16�S1 =
Z
4M

d4x
q
�4g<+ 2

Z t00

t0
d3x

p
hK � 2

Z
�T

d3x
p��
 ��� 2

Z B00

B0

d2x
p
�� ; (A1)

where < is the Ricci scalar of 4M, hij is the induced three-metric on the spacelike manifolds

t0 and t00, and 
ij is the induced three-metric on the timelike boundary elements �T .16 Also,

15We do not prove this, but see, for instance, Ref. [26].

16As in the two-dimensional scenario, it is understood that �T represents the not-simply-connected

total timelike boundary manifold �Ti
S �To. Therefore, �T expressions stand for the sum of an inner-

boundary and an outer-boundary expression.

29



K�� = �h��4r�u� is the extrinsic curvature of t
0 or t00 as embedded in 4M. In this de�nition

u� is the future-pointing normal of t0 or t00, and we have used spacetime coordinates for

convenience, so h�� = 4g�� + u�u�. Likewise, the extrinsic curvature of �T as embedded in
4M is ���� = ��
��4r��n� where �n� is the outward-pointing spacelike normal of �T and here

�
�� =
4g�� � �n��n� . Finally, on the corners B0 and B00 (each is the disjoint union of an inner

and outer sphere) the two-metric is �ab and � = sinh�1(u � �n).
Let us collect a few results needed for the reduction. From the form of the line element

(3.14) one can compute the components of K i
j, the � extrinsic curvature tensor. The set of

nonzero components is the following:

Kr
r = �(N�)�1

h
_�� (�N r)0

i
(A2a)

K�
� = K

�
� = �(NR)�1

�
_R �N rR0

�
(A2b)

Since we work with one index up and one down and since hij is diagonal, these are also

the orthonormal components of K i
j with respect to the standard triad. So we have that

(n �K � n) = ninjK
ij = Kr

r , where nj is the outward-pointing normal of a round sphere B

as embedded in a constant-t spacelike slice � of 4M. Treating the time-radial piece gab of
the full four-metric (3.14) as if it were a true metric in its own right, we can compute its
curvature scalar R[g]. The result is

R = �2(N�)�1 (�Kr
r )
� � 2(N�)�1

�
��1N 0 � �N rKr

r

�
0

: (A3)

Now we turn to the reduction. Let us start with the spacetime volume integral in (A1).
Use the identity17 [27]

<[4g] = 3R[h] +K��K
�� � (K)2 � 2r� (Ku

� + a�) ; (A4)

where a� is the spacetime acceleration of u�, to split this volume integral into three pieces:

(term 1) =
Z
4M

d4x
q
�4g 3R (A5a)

(term 2) =
Z
4M

d4x
q
�4g

h
KijK

ij � (K)2
i

(A5b)

(term 3) = �2
Z
4M

d4x@�

�q
�4g (Ku� + a�)

�
: (A5c)

Focus attention on

(term 3) = �2
Z
4M

d4x

��q
�4g

�
Kut + at

���
+

�q
�4g (Kur + ar)

�
0
�
; (A6)

where one has

17Here we let 3R stand for the � curvature scalar to avoid confusing it with the radius function

R.
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ut = 1=N (A7a)

ur = �N r=N (A7b)

at = 0 (A7c)

ar = N�1��2N 0 : (A7d)

After some work and with
p�4g = N�R2 sin �, this term can be written as

(term 3) =
Z
4
M

d4x
q
�4g

h
R+ 4Kr

rK
�
� � 4��2(logN)0(logR)0

i

�2
Z
4M

d4x sin �

��
2�R2K�

�

�
� �

�
2�R2N rK�

�

�
0
�
: (A8)

Straightforward manipulations show that

(term 2) =
Z
4M

d4x sin �
h
�2K�

�K
�
� � 4Kr

rK
�
�

i
: (A9)

Recombining the three terms, we get

Z
4M

d4x
q
�4g< =

Z
4M

d4x
q
�4g

h
R+ 3R � 2K�

�K
�
� � 4��2 (logN)0 (logR)0

i

�2
Z
4M

d4x sin �

��
2�R2K�

�

�
� �

�
2�R2N rK�

�

�
0
�
: (A10)

Now the explicit expression for the � Ricci scalar is

3R = �4��2R�1R00 + 4��3R�1�0R0 � 2��2R�2(R0)2 + 2R�2 : (A11)

With this expression and the result for K�
� , one can show that

3R � 2K�
�K

�
� = 2R�2

�
�u[R]u[R] + n[R]n[R] + 1� 2��1

�
��1RR0

�
0
�

= 2R�2
�
gab@aR@bR + 1� 2��1

�
��1RR0

�
0
�
: (A12)

After a bit of re-shu�ing, one �nds the following expression for the spacetime volume term

in the action:Z
4M

d4x
q
�4g< =

Z
4M

d4x
q
�4g

h
R + 2R�2gab@aR@bR+ 2R�2

i

�2
Z
4M

d4x sin �
��
2�R2K�

�

�
� �

�
2�R2N rK�

� � 2��1NRR0
�
0
�
: (A13)

Now we turn to the boundary terms in the action. First consider

2
Z t00

t0
d3x

p
hK = 2

Z t00

t0
d3x

p
hKr

r + 4
Z t00

t0
d3x�R2 sin �K�

� : (A14)

For the �T boundary term we have

31



�2
Z
�T

d3x
p��
 �� =

�2
Z
�T

d3x
p��
 ��t

t � 2
Z
�To

d3x
p��


h
���
� +

��
�
�

i
� 2

Z
�Ti

d3x
p��


h
���
� +

��
�
�

i
;

(A15)

where we have simply written explicitly both the inner and outer boundary terms for part

of this integral. Now �ij ��
ij = ���

� +
��
�
�, so we can apply the the result18

�ij ��
ij = 
k + v
�ijK

ij : (A16)

For the case at hand, �ijK
ij = 2K�

� and

k = �2��1R�1R0 (A17)

with � at the outer sphere and + at the inner sphere. Therefore, the �T integral can be

expressed as

�2
Z
�T

d3x
p��
 �� = �2

Z
�T

d3x
p��
 ��t

t � 2
Z �To

�Ti

d3xN sin �
h
�2��1RR0 + 2vR2K�

�

i
; (A18)

where we have used
p��

 = NR2 sin � (note that the two 
's on the lefthand side are

di�erent, the second is the relativistic factor). Also, in the above expression

Z �To

�Ti

=
Z
�To

�
Z
�Ti

; (A19)

and v = �N r=N . The v in (A16) is �v on �Ti and v on �To.
Using the results (A13), (A14), and (A18), we see that with the metric ansatz (3.14) the

spacetime action (A1) reduces to

16�S1 =
Z
4M

d4x
q
�4g

h
R + 2R�2gab@aR@bR+ 2R�2

i

+2
Z t00

t0
d3x

p
hKr

r � 2
Z
�T

d3x
p��
 ��t

t � 2
Z B00

B0

d2x
p
�� ; (A20)

where Kr
r = (n �K � n) = (b � u) and ��t

t = �(�u � �� � �u) = �(�a � �n). Rename these k � Kr
r and

�# � ��t
t. None of the quantities in the above action has any angular dependence. Therefore,

we simple integrate over the angular variables to �nd

S1 = 1

4

Z
M
d2x

p�gR2
h
R + 2R�2gab@aR@bR+ 2R�2

i

+1

2

Z t00

t0
dr�R2k� 1

2

Z
�T

dt �NR2 �#� 1

2
R2�

���B00

B0

: (A21)

18Proving this result is an exercise with projection operators. Note that the extrinsic curvature

of B as embedded in � is de�ned in spacetime coordinates by k�� = ����D�n� , where D� is the

� intrinsic covariant derivative operator compatible with h�� and ��� =
4g�� + u�u� � n�n� . On

a � covector like n� , the action of D� is D�n� = h��h
�
�
4
r�n�. Also remember that �n = 
n+ v
u.
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If one prefers, one can write the action in terms of the dilaton � � �1

2
log �R. The result,

S1 = 1

4
��2

Z
M
d2x

p�ge�2�
h
R + 2gab@a�@b� + 2�2e2�

i

+1

2
��2

Z t00

t0
dr�e�2�k� 1

2
��2

Z
�T

dt �Ne�2� �#� 1

2
��2 e�2��

���B00

B0

; (A22)

is precisely the action (3.1) from the �rst section with the choices y = 1 and � = ��2.

APPENDIX B: THE WITTEN BLACK HOLE

In this section we have two goals in mind. The �rst is to compute the energy at spatial

in�nity (associated with the static-time slices ~�) for the Witten black hole. The second is to

derive expressions, depending on the canonical variables of an arbitrary spacelike slice �, for

the dilaton black-hole mass parameter MW and (minus) the radial derivative of the Killing

time � 0. Our procedure for obtaining such expressions is nearly identical to that found in

KVK. Multiplying the expression we �nd for MW by �=2, one �nds the boost invariant M

given in (3.19).

1. Line element and asymptotic energy

In Kruskal-like coordinates the black-hole solution of the CGHSW theory is given by the
line element

ds2 = �
�
MW=� � �2uv

�
�1

dudv ; (B1)

along with the following expression for the dilaton:

e�2� =MW=� � �2uv : (B2)

Our form of the line element corresponds to the one given in Ref. [26] with u = x�, v =
x+, and the discussion which follows uses the conventions of that reference. We are only
interested in the right static region of the Kruskal diagram associated with (B1).

We wish to compute the energy at in�nity associated with the preferred static-time slices
~�, so we �rst have to �nd these slices. Consider the new coordinates (�; �) de�ned by [26]

�u = �e��(���) (B3a)

�v = e�(�+�) : (B3b)

Note that the coordinate patch (�; �) only covers the right static region of the Kruskal
diagram. In terms of these coordinates the line element reads

ds2 =
�
1 + e�2��MW=�

�
�1 ��d� 2 + d�2

�
: (B4)
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Notice that as � ! 1 the line element becomes 
at. Further, notice that as � ! 1 the

dilaton behaves as

� = ��� � MW

2�
e�2�� +O

�
e�2��

�
; (B5)

where O(e�2��) stands for higher powers in e�2��. At spatial in�nity the black-hole solution

approaches the linear dilaton, the vacuum solution of the theory. For the linear dilaton

� = ��� and the line element is Minkowskian.

The static-time slices ~� are level surfaces of constant � . We shall pick one and evaluate

the energy at an outer boundary point Bo. Now the normal of such a point as embedded in
~� has been denoted ~n = ~n. Since only the static-time slices are of interest now, we shall drop

the tilde which appears on ~�, ~n, and other objects. The history of Bo with respect to the

Eulerian observers of the Killing time slices is the timelike sheet To de�ned by � = �o � �1,

where �o is a �nite constant. This means that the dilaton � is also �xed to a constant value

�o on To. Now it turns out that the energy expression for Bo as embedded in the selected

static slice diverges in the limit that �o !1.

In order to obtain a �nite energy at spatial in�nity, we must reference the energy against

the linear dilaton vacuum before taking the limit. The expression for the quasilocal energy

with reference point is

E = �e�2�
�
n[�]� n[�]j0

�
: (B6)

This expression has been obtain by comparison with the known expression for quasilocal
energy in general relativity, [5]

E = (8�)�1
Z
B
d2x

p
�
�
k � k0

�
: (B7)

In this expression
p
� is the square root of the determinant of the B metric (in our case

that of a round sphere R2 sin �) and k0 is the trace of the extrinsic curvature of a two
surface isometric to B but which is embedded in three-dimensional 
at Euclidean space.19

The origin of the reference term k0 can be traced to the freedom to add a subtraction
term (a functional of the �xed boundary data) to the four-dimensional spacetime action
without a�ecting the variational principle. [5] Likewise, the reference point contribution in
(B6) arises from the freedom to append a subtraction term �S0 to our base action (3.1).
By inspecting (B7), we see that the correct way to calculate the referenced energy is to �rst

calculate n[�]� n[�]j0 and then multiply by the nonlinear \determinant" factor �e�2�.

We shall compute the quasilocal energy for the black hole with the subtraction term
n[�]j0 determined by the linear-dilaton vacuum. For the black-hole solution the outward-
pointing normal to points embedded in the constant � slices is

n =
�
1 + e�2��MW=�

�
1=2
@=@� : (B8)

19Such a construction is not possible for a generic two surface. Of course, such a construction is

always possible when B is a round sphere, the relevant case for this work.
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With this one �nds

n[�] = ��
�
1 + e�2��MW=�

�
�1=2

: (B9)

A similar calculation for the case of the linear dilaton gives,

n[�]j0 = �� : (B10)

Hence, for the point Bo located at a � = �o as embedded in the constant time slice, the

associated referenced quasilocal energy is

E = ��
h
e2�� +MW=�

i �
1�

�
1 + e�2��MW=�

�
�1=2

�����
�=�o

: (B11)

We then have that lim�o!1 E = 1

2
�MW . Hence we obtain the on-shell value of M given

in (3.19) as the asymptotic energy associated with the static time slices. Note that the

asymptotic energy is MW if we make the choice � = 2 for the CGHSW model.

2. Canonical expressions for MW and �� 0

Use of the dilaton itself as the radial coordinate casts the line element (B4) in the
Schwarzschild-like form

ds2 = �Fd� 2+ F�1 (d�=�)2 ; (B12)

where F � 1� e2�MW=�. The horizon is located at � = �(1=2) log(MW=�), or equivalently

at R =
q
MW=�3, and we know from the Kruskal form of the line element (B1) that the

geometry is perfectly regular at the horizon (uv = 0). The goal know is to obtain canonical

expressions for � 0 and MW .
To get the desired expressions follow the method of KVK and assume that � = � (t; r)

and � = �(t; r). It proves convenient to de�ne a dimensional dilaton �� � �=�. Now expand

the di�erentials d� = _�dt+ � 0dr and d�� = _��dt+ ��0dr and plug these into the line element
(B12). Comparison of the result with the ADM form of the metric (2.1) gives the following
equations:

�2 = �F (� 0)2 + F�1(��0)2 (B13a)

�2N r = �F _�� 0 + F�1 _����0 (B13b)

�N2 + (�N r)
2
= �F ( _�)2 + F�1( _��)2 : (B13c)

From these it is straightforward to obtain the following expressions for the lapse and shift:

N r =
�F _�� 0 + F�1 _����0

�F (� 0)2 + F�1(��0)2
(B14a)

N =
_��� 0 � _� ��0q

�F (� 0)2 + F�1(��0)2
: (B14b)
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In obtaining the formula for N , we have taken a square root. Therefore, we need to verify

that we have taken this root in such a way that the lapse is positive in the right static region

of the Kruskal diagram, since we want our spacelike slices to advance everywhere into the

future. Note that the dilaton is a \bad" radial coordinate in the sense that � ! �1 as

one approaches spatial in�nity, whereas the preliminary section has assumed that the radial

coordinate r increases in the direction of spatial in�nity. Therefore, in the right static region

t = � and r = ��� are \good" coordinates, and, using these, we see that the lapse is positive

everywhere in the right static region. The next step is to insert the last two expressions into

the formula for the momenta

P� = �e�2�N�1( _��N r�0) ; (B15)

and after some algebra this insertion yields the �rst of our desired expressions

�� 0 = (��)�1e2�F�1�P� : (B16)

Now, using this expression for �� 0 in the �rst equation of (B13), we �nd the canonical

expression for F ,

F = (��)�2
h
(��0=�)2 � (e2�P�)

2

i
: (B17)

Solving for MW , one �nds the second desired expression,

MW = (��)�2�e2�(P�)
2 � ��1e�2�(�0=�)2 + �e�2� : (B18)

Notice that M = 1

2
�MW is precisely the boost invariant (3.19) with the appropriate choices

for the CGHSW model.
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