103 research outputs found

    Environmental footprints show China and Europe\u27s evolving resource appropriation for soybean production in Mato Grosso, Brazil

    Get PDF
    Mato Grosso has become the center of Brazil\u27s soybean industry, with production located across an agricultural frontier expanding into savanna and rainforest biomes. We present environmental footprints of soybean production in Mato Grosso and resource flows accompanying exports to China and Europe for the 2000s using five indicators: deforestation, land footprint (LF), carbon footprint (CF), water footprint (WF), and nutrient footprints. Soybean production was associated with 65% of the state\u27s deforestation, and 14–17% of total Brazilian land use change carbon emissions. The decade showed two distinct production systems illustrated by resources used in the first and second half of the decade. Deforestation and carbon footprint declined 70% while land, water, and nutrient footprints increased almost 30% between the two periods. These differences coincided with a shift in Mato Grosso\u27s export destination. Between 2006 and 2010, China surpassed Europe in soybean imports when production was associated with 97 m2 deforestation yr−1 ton−1 of soybean, a LF of 0.34 ha yr−1 ton−1, a carbon footprint of 4.6 ton CO2-eq yr−1 ton−1, a WF of 1908 m3 yr−1 ton−1, and virtual phosphorous and potassium of 5.0 kg P yr−1 ton−1 and 0.0042 g K yr−1 ton−1. Mato Grosso constructs soil fertility via phosphorous and potassium fertilizer sourced from third party countries and imported into the region. Through the soybean produced, Mato Grosso then exports both water derived from its abundant, seasonal precipitation and nutrients obtained from fertilizer. In 2010, virtual water flows were 10.3 km3 yr−1 to China and 4.1 km3 yr−1 to Europe. The total embedded nutrient flows to China were 2.12 Mtons yr−1 and 2.85 Mtons yr−1 to Europe. As soybean production grows with global demand, the role of Mato Grosso\u27s resource use and production vulnerabilities highlight the challenges with meeting future international food security needs

    The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)

    Get PDF
    Purpose Life cycle assessment (LCA) has been used to assess freshwater-related impacts according to a new water footprint framework formalized in the ISO 14046 standard. To date, no consensus-based approach exists for applying this standard and results are not always comparable when different scarcity or stress indicators are used for characterization of impacts. This paper presents the outcome of a 2-year consensus building process by the Water Use in Life Cycle Assessment (WULCA), a working group of the UNEP-SETAC Life Cycle Initiative, on a water scarcity midpoint method for use in LCA and for water scarcity footprint assessments. Methods In the previous work, the question to be answered was identified and different expert workshops around the world led to three different proposals. After eliminating one proposal showing low relevance for the question to be answered, the remaining two were evaluated against four criteria: stakeholder acceptance, robustness with closed basins, main normative choice, and physical meaning. Results and discussion The recommended method, AWARE, is based on the quantification of the relative available water remaining per area once the demand of humans and aquatic ecosystems has been met, answering the question “What is the potential to deprive another user (human or ecosystem) when consuming water in this area?” The resulting characterization factor (CF) ranges between 0.1 and 100 and can be used to calculate water scarcity footprints as defined in the ISO standard. Conclusions After 8 years of development on water use impact assessment methods, and 2 years of consensus building, this method represents the state of the art of the current knowledge on how to assess potential impacts from water use in LCA, assessing both human and ecosystem users’ potential deprivation, at the midpoint level, and provides a consensus-based methodology for the calculation of a water scarcity footprint as per ISO 14046

    Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. Methods: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation. Results and discussion: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. Conclusions: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future

    Changes in evapotranspiration, transpiration and evaporation across natural and managed landscapes in the Amazon, Cerrado and Pantanal biomes

    Get PDF
    Land-use and land-cover change (LULCC) can dramatically affect the magnitude, seasonality and main drivers of evaporation (E) and transpiration (T), together as evapotranspiration (ET), with effects on overall ecosystem function, as well as both the hydrological cycle and climate system at multiple scales. Our understanding of tropical ecosystem responses to LULCC and global change processes is still limited, mainly due to a lack of ground-based observations that cover a variety of ecosystems, land-uses and land-covers. In this study, we used a network of nine eddy covariance flux towers installed in natural (forest, savanna, wetland) and managed systems (rainfed and irrigated cropland, pastureland) to explore how LULCC affects ET and its components in the Amazon, Cerrado and Pantanal biomes. At each site, tower-based ET measurements were partitioned into T and E to investigate how these fluxes varied between different land-uses and seasons. We found that ET, T and E decreased significantly during the dry season, except in Amazon forest ecosystems where T rates were maintained throughout the year. In contrast to Amazon forests, Cerrado and Pantanal ecosystems showed stronger stomatal control during the dry season. Cropland and pasture sites had lower ET and T compared to native vegetation in all biomes, but E was greater in Pantanal pasture when compared to Pantanal forest. The T fraction of ET was correlated with LAI and EVI, but relationships were weaker in Amazon forests. Our results highlight the importance of understanding the effects of LULCC on water fluxes in tropical ecosystems, and the implications for climate change mitigation policies and land management

    Climate benefits of intact Amazon forests and the biophysical consequences of disturbance

    Get PDF
    Tropical forests have an important regulating influence on local and regional climate, through modulating the exchange of moisture and energy between the land and the atmosphere. Deforestation disrupts this exchange, though the climatic consequences of progressive, patch-scale deforestation of formerly intact forested landscapes have not previously been assessed. Remote sensing datasets of land surface and atmospheric variables were used to compare the climate responses of Amazon evergreen broadleaf forests that lost their intact status between 2000 and 2013. Clear gradients in environmental change with increasing disturbance were observed. Leaf area index (LAI) showed progressively stronger reductions as forest loss increased, with evapotranspiration (ET) showing a comparative decline. These changes in LAI and ET were related to changes in temperature (T), with increased warming as deforestation increased. Severe deforestation of intact Amazon forest, defined as areas where canopy cover was reduced below 70 %, was shown to have increased daytime land surface T by 0.44 °C over the study period. Differences between intact and disturbed forests were most pronounced during the dry season, with severely deforested areas warming as much as 1.5 °C. Maintenance of canopy cover was identified as an important factor in minimising the impacts of disturbance. Overall, the results highlight the climate benefits provided by intact tropical forests, providing further evidence that protecting intact forests is of utmost importance

    Building consensus on water use assessment of livestock production systems and supply chains: outcome and recommendations from the FAO LEAP Partnership

    Get PDF
    The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only “blue water”); as well as the assessment of overall water productivity of the system (including “green” and “blue water” consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sector

    Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus)

    Get PDF
    In a wide variety of species, male reproductive success is determined by contest for access to females. Among multi-male primate groups, however, factors in addition to male competitive ability may also influence paternity outcome, although their exact nature and force is still largely unclear. Here, we have investigated in a group of free-ranging Barbary macaques whether paternity is determined on the pre- or postcopulatory level and how male competitive ability and female direct mate choice during the female fertile phase are related to male reproductive success. Behavioural observations were combined with faecal hormone analysis for timing of the fertile phase (13 cycles, 8 females) and genetic paternity analysis (n = 12). During the fertile phase, complete monopolisation of females did not occur. Females were consorted for only 49% of observation time, and all females had ejaculatory copulations with several males. Thus, in all cases, paternity was determined on the postcopulatory level. More than 80% of infants were sired by high-ranking males, and this reproductive skew was related to both, male competitive ability and female direct mate choice as high-ranking males spent more time in consort with females than low-ranking males, and females solicited copulations mainly from dominant males. As most ejaculatory copulations were female-initiated, female direct mate choice appeared to have the highest impact on male reproductive success. However, female preference was not directly translated into paternity, as fathers were not preferred over non-fathers in terms of solicitation, consortship and mating behaviour. Collectively, our data show that in the Barbary macaque, both sexes significantly influence male mating success, but that sperm of several males generally compete within the female reproductive tract and that therefore paternity is determined by mechanisms operating at the postcopulatory level
    • 

    corecore