6,910 research outputs found

    Study of proton radiation effects on solar vehicle electronic system

    Get PDF
    Radiation effects on electronic equipment of solar spacecraft - shielding requirement

    A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    Get PDF
    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation

    Role of natural fractures in damage evolution around tunnel excavation in fractured rocks

    Get PDF
    This paper studies the role of pre-existing fractures in the damage evolution around tunnel excavation in fractured rocks. The length distribution of natural fractures can be described by a power law model, whose exponent a defines the relative proportion of large and small fractures in the system. The larger a is, the higher proportion of small fractures is. A series of two-dimensional discrete fracture networks (DFNs) associated with different length exponent a and fracture intensity P21 is generated to represent various scenarios of distributed pre-existing fractures in the rock. The geomechanical behaviour of the fractured rock embedded with DFN geometry in response to isotropic/anisotropic in-situ stress conditions and excavation-induced perturbations is simulated using the hybrid finite-discrete element method (FEMDEM), which can capture the deformation of intact rocks, the interaction of matrix blocks, the displacement of natural fractures, and the propagation of new cracks. An excavation damaged zone (EDZ) develops around the man-made opening as a result of reactivation of pre-existing fractures and propagation of wing cracks. The simulation results show that when a is small, the system which is dominated by large fractures can remain stable after excavation given that P21 is not very high; however, intensive structurally-governed kinematic instability can occur if P21 is sufficiently high and the fracture spacing is much smaller than the tunnel size. With the increase of a, the system becomes more dominated by small fractures, and the EDZ is mainly created by the coalescence of small fractures near the tunnel boundary. The results of this study have important implications for designing stable underground openings for radioactive waste repositories as well as other engineering facilities that are intended to generate minimal damage in the host rock mass

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    Blue Dots Team Transits Working Group Review

    Full text link
    Transiting planet systems offer an unique opportunity to observationally constrain proposed models of the interiors (radius, composition) and atmospheres (chemistry, dynamics) of extrasolar planets. The spectacular successes of ground-based transit surveys (more than 60 transiting systems known to-date) and the host of multi-wavelength, spectro-photometric follow-up studies, carried out in particular by HST and Spitzer, have paved the way to the next generation of transit search projects, which are currently ongoing (CoRoT, Kepler), or planned. The possibility of detecting and characterizing transiting Earth-sized planets in the habitable zone of their parent stars appears tantalizingly close. In this contribution we briefly review the power of the transit technique for characterization of extrasolar planets, summarize the state of the art of both ground-based and space-borne transit search programs, and illustrate how the science of planetary transits fits within the Blue Dots perspective.Comment: 9 pages, 3 figures, to be published in the proceedings (ASP Conf. Ser.) of the "Pathways Towards Habitable Planets" conference, held in Barcelona (14-18 Sep 2009

    A Photometric Survey for Variables and Transits in the Field of Praesepe with KELT

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a small aperture, wide-angle search for planetary transits of solar-type stars. In this paper, we present the results of a commissioning campaign with the KELT telescope to observe the open cluster Praesepe for 34 nights in early 2005. Lightcurves were obtained for 69,337 stars, out of which we identify 58 long period variables and 152 periodic variables. Sixteen of these are previously known as variable, yielding 194 newly discovered variable stars for which we provide properties and lightcurves. We also searched for planetary-like transits, finding four transit candidates. Follow-up observations indicate that two of the candidates are astrophysical false positives, with two candidates remaining as potential planetary transits.Comment: 45 pages, 16 figures. Submitted to AJ. PDF version with full resolution figures located at http://www.astronomy.ohio-state.edu/~pepper/kelt.pd

    The Viking seismometry

    Get PDF
    Efforts were made to determine the seismicity of Mars as well as define its internal structure by detecting vibrations generated by marsquakes and meteoroid impacts. The lack of marsquakes recognized in the Viking data made it impossible to make any direct inferences about the interior of Mars and only allowed the setting of upper bounds on the seismic activity of the planet. After obtaining more than 2100 hours worth of data during the quite periods at rates of one sample per second or higher, the Viking 2 seismometer was turned off as a consequence of a landing system failure. During the periods when adequate data were obtained, one event of possible seismic or meteoroid impact origin was recognized; however, there is a significant probability that this event was generated by a wind gust

    Refined parameters of the planet orbiting HD 189733

    Get PDF
    We report on the BVRI multi-band follow-up photometry of the transiting extrasolar planet HD 189733b. We revise the transit parameters and find planetary radius RP = 1.154+/- 0.032RJ and inclination i_P = 85.79+/-0.24deg. The new density (~ 1g cm-3) is significantly higher than the former estimate (~ 0.75g cm-3); this shows that from the current sample of 9 transiting planets, only HD 209458 (and possibly OGLE-10b) have anomalously large radii and low densities. We note that due to the proximity of the parent star, HD 189733b currently has one of the most precise radius determinations among extrasolar planets. We calculate new ephemerides: P = 2.218573+/-0.000020 days, T0 = 2453629.39420+/-0.00024 (HJD), and estimate the timing offsets of the 11 distinct transits with respect to the predictions of a constant orbital period, which can be used to reveal the presence of additional planets in the system.Comment: 10 pages, 4 figures, submitted to Ap

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti
    corecore