25 research outputs found

    Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    Get PDF
    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Immediate inflammatory response to mechanical circulatory support in a porcine model of severe cardiogenic shock

    No full text
    Background: In selected cases of cardiogenic shock, veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is combined with trans valvular micro axial flow pumps (ECMELLA). Observational studies indicate that ECMELLA may reduce mortality but exposing the patient to two advanced mechanical support devices may affect the early inflammatory response. We aimed to explore inflammatory biomarkers in a porcine cardiogenic shock model managed with V-A ECMO or ECMELLA. Methods: Fourteen landrace pigs had acute myocardial infarction-induced cardiogenic shock with minimal arterial pulsatility by microsphere embolization and were afterwards managed 1:1 with either V-A ECMO or ECMELLA for 4 h. Serial blood samples were drawn hourly and analyzed for serum concentrations of interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha, and serum amyloid A (SAA). Results: An increase in IL-6, IL-8, and SAA levels was observed during the experiment for both groups. At 2–4 h of support, IL-6 levels were higher in ECMELLA compared to V-A ECMO animals (difference: 1416 pg/ml, 1278 pg/ml, and 1030 pg/ml). SAA levels were higher in ECMELLA animals after 3 and 4 h of support (difference: 401 ng/ml and 524 ng/ml) and a significant treatment-by-time effect of ECMELLA on SAA was identified (p = 0.04). No statistical significant between-group differences were observed in carotid artery blood flow, urine output, and lactate levels. Conclusions: Left ventricular unloading with Impella during V-A ECMO resulted in a more extensive inflammatory reaction despite similar end-organ perfusion.</p

    CD and MPR300 protein levels are reduced in α-syn overexpressing mice cortex.

    No full text
    <p>(A) WB analysis for α-syn performed in total lysate from cerebral cortical tissues of 3, 6 and 12 month-aged WT, ASO<sup><i>Tg/+</i></sup> and ASO<sup><i>TgTtg</i></sup> mice. WT tissues are from C57BL/6J mice (background matched to ASO<sup><i>Tg/Tg</i></sup><i>)</i>. No obvious differences in α-syn expression were detected between the two WT mice with different background. N = 5; One-way Anova with post-hoc Tukey test. (B, C) WB for MPR300 and proCD/CD in total lysate from cortex of heterozygous α-syn ASO<sup><i>Tg/+</i></sup> and homozygous α-syn ASO<sup><i>Tg/Tg</i></sup> mice respectively and their correspondent background matched controls. Charts of the band optical density (OD) are shown below each panel. Data were normalized to the corresponding ÎČ-actin values and expressed as % of WT. (*) p<0.05 vs WT. The experiments were run 5 times in triplicate. N = 5. Two tailed T-Test.</p

    AP1 protein levels are reduced in α-syn overexpressing mice cortex.

    No full text
    <p>(A) Western blot analysis of AP-1, AP-2, AP-3, SorLA, Sortilin and VPS35 from WT and ASO<sup><i>Tg/Tg</i></sup> cerebral cortical tissues. Optical density analysis is reported below. Data were normalized on the basis of the correspondent ÎČ–actin values and expressed as % of WT. The experiments have been run 5 times in triplicate (N = 5; Two tailed-T test) (**) p<0.01 vs. WT. (B) Confocal microscopy analysis of Lamp-2 surface staining on Ctrl and ASO cells with anti-Lamp2 antibody. Cells are stained with the primary antibody before permeabilization.</p
    corecore