57 research outputs found

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    In Vitro Dedifferentiation of Melanocytes from Adult Epidermis

    Get PDF
    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation

    p21WAF1/CIP1expression in stage I cutaneous malignant melanoma: its relationship with p53, cell proliferation and survival

    Get PDF
    The expression of p21, p53 and proliferating cell nuclear antigen (PCNA) was analysed by immunohistochemistry in a consecutive series of 369 clinical stage I cutaneous malignant melanoma patients. Correlation of the detected expression levels with each other, with clinicopathological data and with melanoma survival were statistically evaluated. p21 expression was significantly associated with p53 and PCNA expression levels. In addition, high levels of p53 and PCNA were significantly interrelated. Tumour thickness, recurrent disease, high TNM category and older (≥ 55 years) age at diagnosis were inversely associated with p21 expression. Gender, bleeding, tumour thickness, Clark's level of invasion, TNM category and p53 index were all important predictors of both recurrence-free and overall survival of melanoma. In Cox's multivariate analysis including 164 patients with a complete set of data, only high tumour thickness and bleeding predicted poor recurrence-free survival (P= 0.0042 and 0.0087 respectively) or overall survival (P= 0.0147 and 0.0033 respectively). Even though elevated p21 expression may be associated with more favourable prognosis in clinical stage I cutaneous melanoma, our results suggest that cell cycle regulatory effects of p21 can be overcome by some other and stronger, partly yet unknown, mechanisms. 1999 Cancer Research Campaig

    Senescence evasion in melanoma progression: uncoupling of DNA-damage signaling from p53 activation and p21 expression

    No full text
    The best-established function of the melanoma-suppressor p16 is mediation of cell senescence, a permanent arrest following cell proliferation or certain stresses. The importance of p16 in melanoma suggests indolence of the other major senescence pathway through p53. Little or no p53 is expressed in senescent normal human melanocytes, but p16-deficient melanocytes can undergo p53-mediated senescence. As p16 expression occurs in nevi but falls with progression toward melanoma, we here investigated whether p53-dependent senescence occurs at some stage and, if not, what defects were detectable in this pathway, using immunohistochemistry. Phosphorylated checkpoint kinase 2 (CHEK2) can mediate DNA-damage signaling, and under some conditions senescence, by phosphorylating and activating p53. Remarkably, we detected no prevalent p53-mediated senescence in any of six classes of lesions. Two separate defects in p53 signaling appeared common: in nevi, lack of p53 phosphorylation by activated CHEK2, and in melanomas, defective p21 upregulation by p53 even when phosphorylated
    corecore