25 research outputs found

    A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release

    No full text
    The ability to control the intracellular release of drug cargos from nanobioconjugate delivery scaffolds is critical for the successful implementation of nanoparticle (NP)-mediated drug delivery. This is particularly true for hard NP carriers such as semiconductor quantum dots (QDs) and gold NPs. Here, we report the development of a QD-based multicomponent drug release system that, when delivered to the cytosol of mammalian cells, is triggered to release its drug cargo by the simple addition of a competitive ligand to the extracellular medium. The ensemble construct consists of the central QD scaffold that is decorated with a fixed number of maltose binding proteins (MBPs). The MBP binding site is loaded with dye or drug conjugates of the maltose analogue beta-cyclodextrin (βCD) to yield a QD–MBP−βCD ensemble conjugate. The fidelity of conjugate assembly is monitored by Förster resonance energy transfer (FRET) from the QD donor to the dye/drug acceptor. Microplate-based FRET assays demonstrated that the βCD conjugate was released from the MBP binding pocket by maltose addition with an affinity that matched native MBP–maltose binding interactions. In COS-1 cells, the microinjected assembled conjugates remained stably intact in the cytosol until the addition of maltose to the extracellular medium, which underwent facilitated uptake into the cell. Live cell FRET-based confocal microscopy imaging captured the kinetics of realtime release of the βCD ligand as a function of extracellular maltose concentration. Our results demonstrate the utility of the self-assembled QD–MBP−βCD system to facilitate intracellular drug release that is triggered extracellularly through the simple addition of a well-tolerated nutrient and is not dependent on the use of light, magnetic field, ultrasound, or other traditional methods of stimulated drug release. We expect this extracellularly triggered drug release modality to be useful for the in vitro characterization of new drug candidates intended for systemic delivery/actuation and potentially for on-demand drug release in vivo

    Quantum Dots as Förster Resonance Energy Transfer Acceptors of Lanthanides in Time-Resolved Bioassays

    No full text
    We report a flexible and modular design for biosensors based on exploiting semiconductor quantum dots (QDs) and their excellent Förster resonance energy transfer (FRET) acceptor properties along with the long-lived fluorescent lifetimes of lanthanide donors. We demonstrate the format’s wide application by developing a broad adenosine diphosphate (ADP) sensor with quantitative and high-throughput capabilities as a kinase/ATPase assay method. The sensor is based on a Terbium (Tb)-labeled antibody (Ab) that selectively recognizes ADP versus ATP. The Tb-labeled Ab (Ab-Tb) acts as a FRET donor to a QD, which has an ADP modified His<sub>6</sub>-peptide conjugated to its surface via metal-affinity coordination. This strategy of using self-assembly, modified peptides to present antibody epitopes on QD surfaces is readily transferable to other assays of interest. We utilize time-resolved FRET (TR-FRET) to measure the amounts of Ab-Tb bound to the QD by looking at the emission ratio of the QD and Tb in a time-gated manner, minimizing background signal. With the addition of free ADP the antibody is competitively separated from the QD and a change in the ratiometric emission signal correlates with the free ADP concentration. The sensor obtained a detection limit below 10 nM of free ADP and quantitation limit of 35 nM ADP using 8 nM of sensor. Quantitative values were obtained for a model enzyme (glucokinase) kinetics, as well as demonstrations of the assays capability to distinguish enzyme inhibitors. We discuss future outlooks and note areas for improvement in similar design strategies
    corecore