157 research outputs found

    Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implications

    Get PDF
    International audienceThe Sunda Strait is located in the transitional zone between two different modes of subduction: the Java frontal subduction and the Sumatra oblique subduction. This setting implies that the Sunda Strait region is a key to the understanding of the geodynamic processes involved. In order to study the shallow seismicity, a microearthquake survey was carried out in that region. Twelve stations, accurately located by the aim of satellite positionning, recorded about 300 local events in the summer 1984. From this set, 174 shallow earthquakes have been precisely located. The results of this study reveal that the crustal earthquakes in the Sunda Strait area occurs in three main areas: (1) beneath the Krakatau complex, where earthquakes are generated by double-couples and are of tectonic origin; (2) inside a graben in the western part of the strait; and (3) in a more diffused zone to the south of Sumatra. The individual and composite focal mechanisms from the events inside the strait show an extensional regime. A stress tensor, which have been deduced from the individual focal mechanisms of earthquakes of the Krakatau group shows that the tensional axis is oriented N130øE. This study confirms that the Sunda Strait is in an extensional tectonic regime as a result of the northwestward movement of the Sumatra sliver plate along the Semangko fault zone

    Fruit richness and seasonality in a fragmented landscape of french Guiana

    Get PDF
    Tropical forest ecosystems are characterized not only by their richness and their complexity but also by the importance of interspecific relationships in their functioning. Thus, fruit availability is a basic factor of the frugivore population dynamics. In order to estimate the fruit production at Saint-Eugène station and its temporal and spatial variations, we used 200 fruit traps of one square meter. 50 fruit traps were placed at each of the 4 study sites, and items were collected during 5 missions between September 1994 and December 1996. 221 species from 55 families were identified, with Leguminosae, Lecytbidaceae and Burseraceae taxa being the dominant ones. The 4 sites show differences both in fruiting plant species number and in richest family order. These differences in ftoristic composition may be mostly explained by edaphic conditions, which are related to the slope inclination and topographic position. We also observed seasonal variations in fruiting species number, with a regular peak during the rainy season, which was already highlighted in French Guiana by severa! studies. Effects of spatial and temporal heterogeneity in fruit production on a local scale are discussed in regard to forest fragmentation effects on frugivore animal communitiesLes écosystèmes forestiers tropicaux se caractérisent non seulement par leur richesse et leur complexité, mais aussi par l'importance des relations interspécifiques dans leur fonctionnement. Ainsi, la disponibilité en fruits est un facteur primordial de la dynamique des populations de vertébrés frugivores. Pour estimer la production de fruits à la station Saint-Eugène et ses variations spatiales et temporelles, nous avons utilisé 200 collecteurs de fruits de 1 m2. 50 collecteurs ont été placés sur chacun des 4 sites d'étude, et les échantillons ont été récoltés au cours de 5 missions entre septembre 1994 et décembre 1996. 251 espèces appartenant à 55 familles ont été identifiées, les Légumineuses, les Lécythidacées et les Burséracées étant les familles dominantes. Les sites diffèrent tant par le nombre d'espèces de plantes en fruit observées que par l'ordre des familles les plus riches. Ces différences de composition ftoristique peuvent être expliquées par les conditions édaphiques, elles-mêmes liées à l'inclinaison de la pente et à la topographie. Outre cette hétérogénéité spatiale, nous avons observé des variations saisonnières du nombre d'espèces en fruit, avec un pic pendant la saison des pluies, en conformité avec les données obtenues sur d'autres sites de Guyane française. L'impact de ces variations spatiales et temporelles de la production de fruits à l'échelle locale est envisagé dans le cadre d'une étude des effets de la fragmentation du milieu sur les communautés animales frugivore

    Quantitative 3D comparison of biofilm imaged by X-ray microtomography and two-photon laser scanning microscopy

    Get PDF
    Optical imaging techniques for biofilm observation, like laser scanning microscopy, are not applicable when investigating biofilm formation in opaque porous media. X-ray micro-tomography (X-ray CMT) might be an alternative but it finds limitations in similarity of X-ray absorption coefficients for the biofilm and aqueous phases. To overcome this difficulty, barium sulphate was used in Davit et al. (2011) to enable high-resolution 3D imaging of biofilm via X-ray CMT. However, this approach lacks comparison with well-established imaging methods, which are known to capture the fine structures of biofilms, as well as uncertainty quantification. Here, we compare two-photon laser scanning microscopy (TPLSM) images of Pseudomonas Aeruginosa biofilm grown in glass capillaries against X-ray CMT using an improved protocol where barium sulphate is combined with low-gelling temperature agarose to avoid sedimentation. Calibrated phantoms consisting of mono-dispersed fluorescent and X-ray absorbent beads were used to evaluate the uncertainty associated with our protocol along with three different segmentation techniques, namely hysteresis, watershed and region growing, to determine the bias relative to image binarization. Metrics such as volume, 3D surface area and thickness were measured and comparison of both imaging modalities shows that X-ray CMT of biofilm using our protocol yields an accuracy that is comparable and even better in certain respects than TPLSM, even in a nonporous system that is largely favourable to TPLSM

    Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules

    Get PDF
    Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation

    Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study

    Get PDF
    Increasing evidence indicates the presence of engineered nanoparticles (ENPs) in sewage sludge derived from wastewater treatment. Land application of sewage sludge is, therefore, considered as an important pathway for ENP transfer to the environment. The aim of this work was to understand the effects of sewage sludge containing nano-TiO2 on plants (tomato) when used as an amendment in agricultural soil. We assessed developmental parameters for the entire plant life cycle along with metabolic and bio-macromolecule changes and titanium accumulation in plants. The results suggest that the sewage sludge amendment containing nano-TiO2 increased plant growth (142% leaf biomass, 102% fruit yield), without causing changes in biochemical responses, except for a 43% decrease in leaf tannin concentration. Changes in elemental concentrations (mainly Fe, B, P, Na, and Mn) of plant stem, leaves and, to a lesser extent fruits were observed. Fourier-transformed infrared analysis showed maximum changes in plant leaves (decrease in tannins and lignins and increase in carbohydrates) but no change in fruits. No significant Ti enrichment was detected in tomato fruits. In conclusion, we evidenced no acute toxicity to plants and no major implication for food safety after one plant life cycle exposure

    Temporal correlations among demographic parameters are ubiquitous but highly variable across species

    Get PDF
    Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species

    Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G

    Get PDF
    Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5 in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently

    Evolution of the Primate APOBEC3A Cytidine Deaminase Gene and Identification of Related Coding Regions

    Get PDF
    The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1–4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme
    corecore