10,058 research outputs found

    Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    Get PDF
    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur

    Self-Supervised Relative Depth Learning for Urban Scene Understanding

    Full text link
    As an agent moves through the world, the apparent motion of scene elements is (usually) inversely proportional to their depth. It is natural for a learning agent to associate image patterns with the magnitude of their displacement over time: as the agent moves, faraway mountains don't move much; nearby trees move a lot. This natural relationship between the appearance of objects and their motion is a rich source of information about the world. In this work, we start by training a deep network, using fully automatic supervision, to predict relative scene depth from single images. The relative depth training images are automatically derived from simple videos of cars moving through a scene, using recent motion segmentation techniques, and no human-provided labels. This proxy task of predicting relative depth from a single image induces features in the network that result in large improvements in a set of downstream tasks including semantic segmentation, joint road segmentation and car detection, and monocular (absolute) depth estimation, over a network trained from scratch. The improvement on the semantic segmentation task is greater than those produced by any other automatically supervised methods. Moreover, for monocular depth estimation, our unsupervised pre-training method even outperforms supervised pre-training with ImageNet. In addition, we demonstrate benefits from learning to predict (unsupervised) relative depth in the specific videos associated with various downstream tasks. We adapt to the specific scenes in those tasks in an unsupervised manner to improve performance. In summary, for semantic segmentation, we present state-of-the-art results among methods that do not use supervised pre-training, and we even exceed the performance of supervised ImageNet pre-trained models for monocular depth estimation, achieving results that are comparable with state-of-the-art methods

    Strategies for High-Temperature Corrosion Simulations of Fe-Based Alloys Using the Calphad Approach: Part I

    Get PDF
    The environmental degradation of materials at high temperatures limits the useful life of different industrial components and hinders the development of more economical and environmentally friendly processes for the energy production. Despite the importance of this phenomena, a model to predict lifetime of materials that degrade due to high-temperature corrosion has up till now been lacking due to limitations of the computational possibilities and the complex nature of oxidation. In the present work we develop some strategies to model high-temperature corrosion in Fe-based alloys using the Calphad (Calculation of Phase Diagrams) approach. It is proposed that kinetic-based simulations for oxidation of Al and Cr can accurately represent the lifetime of the protective layers in FeCrAl and FeCr alloys at different temperatures in air. The oxide systems are in addition investigated by equilibrium calculations. The corrosion mechanisms of FeCr and FeCrAl alloys are discussed based on theoretical and experimental knowledge

    INTEGRAL broadband spectroscopy of Vela X-1

    Full text link
    The wind-accreting X-ray binary pulsar and cyclotron line source Vela X-1 has been observed extensively during INTEGRAL Core Program observations of the Vela region in June-July and November-December 2003. In the latter set of observations the source showed intense flaring -- see also Staubert et al. (2004), these proceedings. We present early results on time averaged and time resolved spectra, of both epochs of observations. A cyclotron line feature at ~53 keV is clearly detected in the INTEGRAL spectra and its broad shape is resolved in SPI spectra. The remaining issues in the calibration of the instruments do not allow to resolve the question of the disputed line feature at 20-25 keV. During the first main flare the average luminosity increases by a factor of \~10, but the spectral shape remains very similar, except for a moderate softening.Comment: Accepted for proceedings of 5th INTEGRAL Worksho

    Resolving the shocked gas in HH54 with Herschel: CO line mapping at high spatial and spectral resolution

    Get PDF
    The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s1^{-1}. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 μ\mum) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.Comment: 6 pages, 5 figure

    O18O and C18O observations of rho Oph A

    Full text link
    Observations of the (N_J=1_1-1_0) ground state transition of O_2 with the Odin satellite resulted in a about 5 sigma detection toward the dense core rho Oph A. At the frequency of the line, 119 GHz, the Odin telescope has a beam width of 10', larger than the size of the dense core, so that the precise nature of the emitting source and its exact location and extent are unknown. The current investigation is intended to remedy this. Telluric absorption makes ground based O_2 observations essentially impossible and observations had to be done from space. mm-wave telescopes on space platforms were necessarily small, which resulted in large, several arcminutes wide, beam patterns. Although the Earth's atmosphere is entirely opaque to low-lying O_2 transitions, it allows ground based observations of the much rarer O18O in favourable conditions and at much higher angular resolution with larger telescopes. In addition, rho Oph A exhibits both multiple radial velocity systems and considerable velocity gradients. Extensive mapping of the region in the proxy C18O (J=3-2) line can be expected to help identify the O_2 source on the basis of its line shape and Doppler velocity. Line opacities were determined from observations of optically thin 13C18O (J=3-2) at selected positions. During several observing periods, two C18O intensity maxima in rho Oph A were searched for in the 16O18O (2_1-0_1) line at 234 GHz with the 12m APEX telescope. Our observations resulted in an upper limit on the integrated O18O intensity of < 0.01 K km/s (3 sigma) into the 26.5" beam. We conclude that the source of observed O_2 emission is most likely confined to the central regions of the rho Oph A cloud. In this limited area, implied O_2 abundances could thus be higher than previously reported, by up to two orders of magnitude.Comment: 7 pages, 6 figures (5 colour), Astronomy & Astrophysic

    OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS

    Get PDF
    OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.Comment: Accepted for publication in Astronomy and Astrophysics. Abstract abridge

    Experimental Verification of the Chemical Sensitivity of Two-Site Double Core-Hole States Formed by an X-ray FEL

    Full text link
    We have performed X-ray two-photon photoelectron spectroscopy (XTPPS) using the Linac Coherent Light Source (LCLS) X-ray free-electron laser (FEL) in order to study double core-hole (DCH) states of CO2, N2O and N2. The experiment verifies the theory behind the chemical sensitivity of two-site (ts) DCH states by comparing a set of small molecules with respect to the energy shift of the tsDCH state and by extracting the relevant parameters from this shift.Comment: 11 pages, 2 figure
    corecore