152 research outputs found

    Is the Kaiser Permanente model superior in terms of clinical integration?: a comparative study of Kaiser Permanente, Northern California and the Danish healthcare system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integration of medical care across clinicians and settings could enhance the quality of care for patients. To date, there is limited data on the levels of integration in practice. Our objective was to compare primary care clinicians' perceptions of clinical integration and three sub-aspects in two healthcare systems: Kaiser Permanente, Northern California (KPNC) and the Danish healthcare system (DHS). Further, we examined the associations between specific organizational factors and clinical integration within each system.</p> <p>Methods</p> <p>Comparable questionnaires were sent to a random sample of primary care clinicians in KPNC (n = 1103) and general practitioners in DHS (n = 700). Data were analysed using multiple logistic regression models.</p> <p>Results</p> <p>More clinicians in KPNC perceived to be part of a clinical integrated environment than did general practitioners in the DHS (OR = 3.06, 95% CI: 2.28, 4.12). Further, more KPNC clinicians reported timeliness of information transfer (OR = 2.25, 95% CI: 1.62, 3.13), agreement on roles and responsibilities (OR = 1.79, 95% CI: 1.30, 2.47) and established coordination mechanisms in place to ensure effective handoffs (OR = 6.80, 95% CI: 4.60, 10.06). None of the considered organizational factors in the sub-country analysis explained a substantial proportion of the variation in clinical integration.</p> <p>Conclusions</p> <p>More primary care clinicians in KPNC reported clinical integration than did general practitioners in the DHS. Focused measures of clinical integration are needed to develop the field of clinical integration and to create the scientific foundation to guide managers searching for evidence based approaches.</p

    Engineering coherent interactions in molecular nanomagnet dimers

    Get PDF
    Proposals for systems embodying condensed matter spin qubits cover a very wide range of length scales, from atomic defects in semiconductors all the way to micron-sized lithographically defined structures. Intermediate scale molecular components exhibit advantages of both limits: like atomic defects, large numbers of identical components can be fabricated; as for lithographically defined structures, each component can be tailored to optimise properties such as quantum coherence. Here we demonstrate what is perhaps the most potent advantage of molecular spin qubits, the scalability of quantum information processing structures using bottom-up chemical self-assembly. Using Cr7Ni spin qubit building blocks, we have constructed several families of two-qubit molecular structures with a range of linking strategies. For each family, long coherence times are preserved, and we demonstrate control over the inter-qubit quantum interactions that can be used to mediate two-qubit quantum gates

    FTO gene polymorphisms and obesity risk: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of obesity is reportedly related to variations in the fat mass and an obesity-associated gene (<it>FTO</it>); however, as the number of reports increases, particularly with respect to varying ethnicities, there is a need to determine more precisely the effect sizes in each ethnic group. In addition, some reports have claimed ethnic-specific associations with alternative SNPs, and to that end there has been a degree of confusion.</p> <p>Methods</p> <p>We searched PubMed, MEDLINE, Web of Science, EMBASE, and BIOSIS Preview to identify studies investigating the associations between the five polymorphisms and obesity risk. Individual study odds ratios (OR) and their 95% confidence intervals (CI) were estimated using per-allele comparison. Summary ORs were estimated using a random effects model.</p> <p>Results</p> <p>We identified 59 eligible case-control studies in 27 articles, investigating 41,734 obesity cases and 69,837 healthy controls. Significant associations were detected between obesity risk and the five polymorphisms: rs9939609 (OR: 1.31, 95% CI: 1.26 to 1.36), rs1421085 (OR: 1.43, 95% CI: 1.33 to 1.53), rs8050136 (OR: 1.25, 95% CI: 1.13 to 1.38), rs17817449 (OR: 1.54, 95% CI: 1.41 to 1.68), and rs1121980 (OR: 1.34, 95% CI: 1.10 to 1.62). Begg's and Egger's tests provided no evidence of publication bias for the polymorphisms except rs1121980. There is evidence of higher heterogeneity, with <it>I</it><sup>2 </sup>test values ranging from 38.1% to 84.5%.</p> <p>Conclusions</p> <p>This meta-analysis suggests that <it>FTO </it>may represent a low-penetrance susceptible gene for obesity risk. Individual studies with large sample size are needed to further evaluate the associations between the polymorphisms and obesity risk in various ethnic populations.</p

    Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2

    Get PDF
    BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands

    The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression

    Get PDF
    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants

    Is There a Place for Dietary Fiber Supplements in Weight Management?

    Get PDF
    Inadequate dietary fiber intake is common in modern diets, especially in children. Epidemiological and experimental evidence point to a significant association between a lack of fiber intake and ischemic heart disease, stroke atherosclerosis, type 2 diabetes, overweight and obesity, insulin resistance, hypertension, dyslipidemia, as well as gastrointestinal disorders such as diverticulosis, irritable bowel disease, colon cancer, and cholelithiasis. The physiological effects of fiber relate to the physical properties of volume, viscosity, and water-holding capacity that the fiber imparts to food leading to important influences over the energy density of food. Beyond these physical properties, fiber directly impacts a complex array of microbiological, biochemical, and neurohormonal effects directly through modification of the kinetics of digestion and through its metabolism into constituents such as short chain fatty acids, which are both energy substrates and important enteroendocrine ligands. Of particular interest to clinicians is the important role dietary fiber plays in glucoregulation, appetite, and satiety. Supplementation of the diet with highly functional fibers may prove to play an important role in long-term obesity management

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore