2,163 research outputs found

    Calibration and data analysis routines for nanoindentation with spherical tips

    Full text link
    Instrumented spherical nanoindentation with a continuous stiffness measurement has gained increased popularity in material science studies in brittle and ductile materials alike. These investigations span hypotheses related to a wide range of microphysics involving grain boundaries, twins, dislocation densities, ion-induced damage and more. These studies rely on the implementation of different methodologies for instrument calibration and for circumventing tip shape imperfections. In this study, we test, integrate, and re-adapt published strategies for tip and machine-stiffness calibration for spherical tips. We propose a routine for independently calibrating the effective tip radius and the machine stiffness using three reference materials (fused silica, sapphire, glassy carbon), which requires the parametrization of the effective radius as a function of load. We validate our proposed workflow against key benchmarks, such as variation of Young's modulus with depth. We apply the resulting calibrations to data collected in materials with varying ductility (olivine, titanium, and tungsten) to extract indentation stress-strain curves. We also test the impact of the machine stiffness on recently proposed methods for identification of yield stress, and compare the influence of different conventions on assessing the indentation size effect. Finally, we synthesize these analysis routines in a single workflow for use in future studies aiming to extract and process data from spherical nanoindentation

    Calibration and data-analysis routines for nanoindentation with spherical tips

    Get PDF
    Instrumented spherical nanoindentation with a continuous stiffness measurement has gained increased popularity in microphysical investigations of grain boundaries, twins, dislocation densities, ion-induced damage, and more. These studies rely on different methodologies for instrument and tip calibration. Here, we test, integrate, and re-adapt published strategies for tip and machine-stiffness calibration for spherical tips. We propose a routine for independently calibrating the effective tip radius and the machine stiffness using standard reference materials, which requires the parametrization of the effective radius as a function of load. We validate our proposed workflow against key benchmarks and apply the resulting calibrations to data collected in materials with varying ductility to extract indentation stress–strain curves. We also test the impact of the machine stiffness on recently proposed methods for identification of yield stress. Finally, we synthesize these analyses in a single workflow for use in future studies aiming to extract and process data from spherical nanoindentation

    Dislocation interactions in olivine control postseismic creep of the upper mantle.

    Get PDF
    Changes in stress applied to mantle rocks, such as those imposed by earthquakes, commonly induce a period of transient creep, which is often modelled based on stress transfer among slip systems due to grain interactions. However, recent experiments have demonstrated that the accumulation of stresses among dislocations is the dominant cause of strain hardening in olivine at temperatures ≤600 °C, raising the question of whether the same process contributes to transient creep at higher temperatures. Here, we demonstrate that olivine samples deformed at 25 °C or 1150-1250 °C both preserve stress heterogeneities of ~1 GPa that are imparted by dislocations and have correlation lengths of ~1 μm. The similar stress distributions formed at these different temperatures indicate that accumulation of stresses among dislocations also provides a contribution to transient creep at high temperatures. The results motivate a new generation of models that capture these intragranular processes and may refine predictions of evolving mantle viscosity over the earthquake cycle

    The role of grain boundaries in low-temperature plasticity of olivine revealed by nanoindentation

    Get PDF
    The rheological properties of olivine influence large-scale, long-term deformation processes on rocky planets. Studies of the deformation of olivine at low temperatures and high stresses have emphasized the importance of a grain-size effect impacting yield stress. Laboratory studies indicate that aggregates with finer grains are stronger than those with coarser grains. However, the specific interactions between intracrystalline defects and grain boundaries leading to this effect in olivine remain unresolved. In this study, to directly observe and quantify the mechanical properties of olivine grain boundaries, we conduct nanoindentation tests on well characterized bicrystals. Specifically, we perform room-temperature spherical and Berkovich nanoindentation tests on a subgrain boundary (13°, [100]/(016)) and a high-angle grain boundary (60°, [100]/(011)). These tests reveal that plasticity is easier to initiate if the high-angle grain boundary is within the deformation volume, whereas the subgrain boundary does not impact the initiation of plasticity. Additionally, the high-angle grain boundary acts as a barrier to slip transmission, whereas the subgrain boundary does not interact with dislocations in a measurable manner. We suggest that the distribution of grain-boundary types in olivine-rich rocks might play a role in generating local differences in mechanical behavior during deformation

    Are variations in rates of attending cultural activities associated with population health in the United States?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population studies conducted in Sweden have revealed an association between attendance at cultural activities and health. Using data from US residents, we examined whether the association could be observed in the US.</p> <p>Methods</p> <p>Participants in the current study included 1,244 individuals who participated in the 1998 General Social Survey.</p> <p>Results</p> <p>A significant association between cultural activities and self-reported health (SRH) was observed, even after controlling for age, gender, marital status, race, number of children, subjective social class, employment status, household income, and educational attainment. Specifically, the more cultural activities people reported attending, the better was their SRH.</p> <p>Conclusion</p> <p>The data confirm that an association between cultural activity and health is present in a US sample. The data do not mean that the association is causal, but they suggest that further longitudinal research is warranted.</p

    The impact of severe haemophilia and the presence of target joints on health-related quality-of-life

    Get PDF
    Background: Joint damage remains a major complication associated with haemophilia and is widely accepted as one of the most debilitating symptoms for persons with severe haemophilia. The aim of this study is to describe how complications of haemophilia such as target joints influence health-related quality of life (HRQOL). Methods: Data on hemophilia patients without inhibitors were drawn from the ‘Cost of Haemophilia across Europe – a Socioeconomic Survey’ (CHESS) study, a cost-of-illness assessment in severe haemophilia A and B across five European countries (France, Germany, Italy, Spain, and the UK). Physicians provided clinical and sociodemographic information for 1285 adult patients, 551 of whom completed corresponding questionnaires, including EQ-5D. A generalised linear model was developed to investigate the relationship between EQ-5D index score and target joint status (defined in the CHESS study as areas of chronic synovitis), adjusted for patient covariates including socio-demographic characteristics and comorbidities. Results: Five hundred and fifteen patients (42% of the sample) provided an EQ-5D response; a total of 692 target joints were recorded across the sample. Mean EQ-5D index score for patients with no target joints was 0.875 (standard deviation [SD] 0.179); for patients with one or more target joints, mean index score was 0.731 (SD 0.285). Compared to having no target joints, having one or more target joints was associated with lower index scores (average marginal effect (AME) -0.120; SD 0.0262; p < 0.000). Conclusions: This study found that the presence of chronic synovitis has a significant negative impact on HRQOL for adults with severe haemophilia. Prevention, early diagnosis and treatment of target joints should be an important consideration for clinicians and patients when managing haemophilia

    Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015

    Get PDF
    Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard – the Norwegian young sea ICE 2015 expedition (N-ICE2015) - gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first- and second-year ice now common in the majority of the Arctic Basin. During the 5-month long expedition, the ice cover underwent several strong deformation events, including a powerful storm in early February that damaged the ice cover irreversibly. The values of total deformation measured during N-ICE2015 exceed previously measured values in the Arctic Basin at similar scales: At 100 km scale, N-ICE2015 values averaged above 0.1, day−1, compared to rates of 0.08 day −1 or less for previous buoy arrays. The exponent of the power law between the deformation length scale and total deformation developed over the season from 0.37 to 0.54 with an abrupt increase immediately after the early February storm, indicating a weakened ice cover with more free drift of the sea ice floes. Our results point to a general increase in deformation associated with the younger and thinner Arctic sea ice and to a potentially destructive role of winter storms

    The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations

    Get PDF
    Crystallographic preferred orientations (CPOs) in olivine are widely used to infer the mechanisms, conditions, and kinematics of deformation of mantle rocks. Recent experiments on water-saturated olivine were the first to produce a complex CPO characterised by bimodal orientation distributions of both [100] and [001] axes and inferred to form by combined activity of (001)[100], (100)[001], and (010)[100] slip. This result potentially provides a new microstructural indicator of deformation in the presence of elevated concentrations of intracrystalline hydrous point defects and has implications for the interpretation of seismic anisotropy. Here, we document a previously unexplained natural example of this CPO type in a xenolith from Lesotho and demonstrate that it too may be explained by elevated concentrations of hydrous point defects. We test and confirm the hypothesis that combined (001)[100], (100)[001], and (010)[100] slip were responsible for formation of this CPO by (1) using high-angular resolution electron backscatter diffraction to precisely characterise the dislocation types present in both the experimental and natural samples and (2) employing visco-plastic self-consistent simulations of CPO evolution to assess the ability of these slip systems to generate the observed CPO. Finally, we utilise calculations based on effective-medium theory to predict the anisotropy of seismic wave velocities arising from the CPO of the xenolith. Maxima in S-wave velocities and anisotropy are parallel to both the shear direction and shear plane normal, whereas maxima in P-wave velocities are oblique to both, adding complexity to interpretation of deformation kinematics from seismic anisotropy.D. Wallis, L.N. Hansen, and A.J. Wilkinson acknowledge support from the Natural Environment Research Council Grant NE/M000966/1. M. Tasaka acknowledges support through a JSPS Research Fellowship for Young Scientists (26-4879) and the Japan Society for the Promotion of Science (16K17832). D.L. Kohlstedt acknowledges support through NASA Grant NNX15AL53G. K.M. Kumamoto acknowledges support through NSF Division of Earth Science grants 1255620 and 1625032

    Bayesian inference of biochemical kinetic parameters using the linear noise approximation

    Get PDF
    Background Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data. Results We use the linear noise approximation to model biochemical reactions through a stochastic dynamic model which essentially approximates a diffusion model by an ordinary differential equation model with an appropriately defined noise process. An explicit formula for the likelihood function can be derived allowing for computationally efficient parameter estimation. The proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov chain Monte Carlo. Conclusion The major advantage of the method is that in contrast to the more established diffusion approximation based methods the computationally costly methods of data augmentation are not necessary. Our approach also allows for unobserved variables and measurement error. The application of the method to both simulated and experimental data shows that the proposed methodology provides a useful alternative to diffusion approximation based methods
    • …
    corecore