62 research outputs found

    Evaluation of Biomarkers of NAFLD in a Cohort of Morbidly Obese Patients

    Get PDF
    Hepatocyte apoptosis is a key event in nonalcoholic fatty liver disease (NAFLD), and serum apoptotic markers are emerging as surrogate markers for NAFLD. We studied the role of caspase-cleaved cytokeratin18 in the diagnosis of fibrosis in a cohort of 127 morbidly obese patients and also performed a review of the literature biomarkers of NAFLD and fibrosis. Here, we found that cleaved caspase 18 correlated with liver steatosis and liver injury as assessed by serum transaminase levels. Furthermore, hepatocyte apoptosis as assessed by cleaved CK18 and TUNEL staining correlated with the extent of fibrosis as assessed by Sirius Red staining and serum hyaluronic acid. These results underscore the important role of hepatocyte apoptosis in the pathogenesis of fibrosis in NAFLD, which led to the utilization of surrogate markers for apoptosis in the noninvasive diagnosis of NAFLD. We furthermore reviewed current literature of biomarkers of NAFLD and fibrosis

    Simultaneous Induction of Glycolysis and Oxidative Phosphorylation during Activation of Hepatic Stellate Cells Reveals Novel Mitochondrial Targets to Treat Liver Fibrosis

    Get PDF
    Upon liver injury, hepatic stellate cells (HSCs) transdifferentiate to migratory, proliferative and extracellular matrix-producing myofibroblasts (e.g., activated HSCs; aHSCs) causing liver fibrosis. HSC activation is associated with increased glycolysis and glutaminolysis. Here, we compared the contribution of glycolysis, glutaminolysis and mitochondrial oxidative phosphorylation (OXPHOS) in rat and human HSC activation. Basal levels of glycolysis (extracellular acidification rate similar to 3-fold higher) and particularly mitochondrial respiration (oxygen consumption rate similar to 5-fold higher) were significantly increased in rat aHSCs, when compared to quiescent rat HSC. This was accompanied by extensive mitochondrial fusion in rat and human aHSCs, which occurred without increasing mitochondrial DNA content and electron transport chain (ETC) components. Inhibition of glycolysis (by 2-deoxy-D-glucose) and glutaminolysis (by CB-839) did not inhibit rat aHSC proliferation, but did reduce Acta2 (encoding alpha-SMA) expression slightly. In contrast, inhibiting mitochondrial OXPHOS (by rotenone) significantly suppressed rat aHSC proliferation, as well as Col1a1 and Acta2 expression. Other than that observed for rat aHSCs, human aHSC proliferation and expression of fibrosis markers were significantly suppressed by inhibiting either glycolysis, glutaminolysis or mitochondrial OXPHOS (by metformin). Activation of HSCs is marked by simultaneous induction of glycolysis and mitochondrial metabolism, extending the possibilities to suppress hepatic fibrogenesis by interfering with HSC metabolism

    Liver Injury Indicating Fatty Liver but Not Serologic NASH Marker Improves under Metformin Treatment in Polycystic Ovary Syndrome

    Get PDF
    Objective. Polycystic ovary syndrome (PCOS) is associated with obesity and insulin resistance (IR), key features of nonalcoholic steatohepatitis (NASH). Cytokeratin 18 fragments (M30) have been established as a serum marker for NASH. The insulin sensitizer metformin improves hepatic IR. This study evaluates the influence of MF on serologic NASH (sNASH) in patients with PCOS. Patients and Methods. In 89 patients, metabolic parameters, liver injury indicating fatty liver (LIFL), and M30 were assessed at baseline and after metformin treatment. Patients with initial IR were subdivided into dissolved (PCOS-exIR) and persistent IR (PCOS-PIR) after treatment and compared to an initially insulin sensitive PCOS group (PCOS-C). Results. Improvement of LIFL prevalence could be seen in PCOS-C and PCOS-exIR compared to PCOS-PIR (−19.4, resp., −12.0% versus 7.2%, Chi2 = 29.5, P<0.001) without change in sNASH prevalence. In PCOS-PIR, ALT levels increased significantly accompanied by a nominal, nonsignificant M30 increase. Conclusions. Metformin improves LIFL in subgroups of patients with PCOS without influencing sNASH. This could either indicate a missing effect of metformin on NAFLD or slowed disease progression. Further studies are needed to elucidate NAFLD in the context of PCOS and potential therapeutic options

    Future agriculture with minimized phosphorus losses to waters: research needs and direction

    Get PDF
    The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities

    Mitochondrial DNA methylation in metabolic associated fatty liver disease

    Get PDF
    INTRODUCTION: Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD.METHODS: HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing.RESULTS AND DISCUSSION: Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.</p

    Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury

    Get PDF
    Background & Aims: c-Jun N-terminal kinase (JNK)1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated, via phosphorylation, in response to acetaminophen- or CCl4-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissues from patients and in mice with genetic deletion of JNK in hepatocytes. Methods: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, non-steroidal anti-inflammatory drugs or autoimmune hepatitis), or patients without acute liver failure (controls), collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and western blotting. Mice with hepatocyte-specific deletion ofJnk1 (Jnk1Δhepa) or combination of Jnk1 and Jnk2 (JnkΔhepa), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray, and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes.  Results: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to JnkΔhepa mice produced a greater level of liver injury than that observed in Jnk1Δhepa or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in JnkΔhepa mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared to Jnk1Δhepa or control mice. Hepatocytes from JnkΔhepamice given acetaminophen had an increased oxidative stress response, leading to decreased activation of AMPK, total protein AMPK levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected JnkΔhepaand control mice from liver injury. Conclusions: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects

    Mitochondrial DNA methylation in metabolic associated fatty liver disease

    Get PDF
    IntroductionHepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD.MethodsHepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients’ samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing.Results and discussionDifferentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD

    Hepatocyte KLF6 expression affects FXR signalling and the clinical course of primary sclerosing cholangitis

    Get PDF
    Background & Aims: Primary sclerosing cholangitis (PSC) is characterized by chronic cholestasis and inflammation, which promotes cirrhosis and an increased risk of cholangiocellular carcinoma (CCA). The transcription factor Krueppel-like-factor-6 (KLF6) is a mediator of liver regeneration, steatosis, and hepatocellular carcinoma (HCC), but no data are yet available on its potential role in cholestasis. Here, we aimed to identify the impact of hepatic KLF6 expression on cholestatic liver injury and PSC and identify potential effects on farnesoid-X-receptor (FXR) signalling. Methods: Hepatocellular KLF6 expression was quantified by immunohistochemistry (IHC) in liver biopsies of PSC patients and correlated with serum parameters and clinical outcome. Liver injury was analysed in hepatocyte-specific Klf6-knockout mice following bile duct ligation (BDL). Chromatin-immunoprecipitation-assays (ChIP) and KLF6-overexpressing HepG2 cells were used to analyse the interaction of KLF6 and FXR target genes such as NR0B2. Results: Based on IHC, PSC patients could be subdivided into two groups showing either low (80%) hepatocellular KLF6 expression. In patients with high KLF6 expression, we observed a superior survival in Kaplan-Meier analysis. Klf6-knockout mice showed reduced hepatic necrosis following BDL when compared to controls. KLF6 suppressed NR0B2 expression in HepG2 cells mediated through binding of KLF6 to the NR0B2 promoter region. Conclusion: Here, we show an association between KLF6 expression and the clinical course and overall survival in PSC patients. Mechanistically, we identified a direct interaction of KLF6 with the FXR target gene NR0B2

    Extracellular vesicles in metabolic dysfunction associated fatty liver disease: mechanisms, diagnostic and therapeutic implications

    Get PDF
    The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is increasing rapidly worldwide due to the obesity epidemic. Advanced stages of the MAFLD, such as non-alcoholic steatohepatitis (NASH) with advanced fibrosis or cirrhosis are affecting global health. Extracellular vesicles (EVs) are released by all cell types and are important in cell-to-cell communication and maintaining homeostasis, but they also play a role in the pathogenesis of various diseases. EVs contain biological information such as lipids, proteins, messenger RNAs (mRNAs), small RNAs, and DNA, and they act on (distant) target cells. The cargo of EVs is dependent on the type and the state of the releasing cell. EVs have been proposed as biomarkers, prognostic, and even therapeutic agents, also in the context of liver diseases. This review aims to give an overview of the current knowledge on EVs in MAFLD, including the role and interaction of EVs with different cell types in the liver. Several aspects of EVs, including their origin, characteristics, cargo, and functions are reviewed. Moreover, the potential of EVs as targets for the treatment of MAFLD is discussed
    corecore