134 research outputs found

    A new species of Agaporomorphus Zimmermann, 1921 from Peru (Coleoptera, Dytiscidae, Copelatinae)

    Get PDF
    Agaporomorphus julianeae sp. n. is described from the Biological Field Station Panguana, in Huanuco province of central Peru. The new species belongs to the A. knischi-group sensu Miller 2005. Together with A. knischi Zimmermann, 1921 and A. colberti Miller & Wheeler, 2008 this is the third species of the genus with broadly enlarged male antennomeres. The new species can be separated from A. colberti and A. knischi by the smaller please expanded male antennomere VIII, and the form of the median lobe. Important species characters (median lobe, male antennae, metafemur, colour pattern) of the new species and A. knischi are figured, and the habitat, a temporary blackwater forest pond, and its species rich water beetle coenosis are illustrated and described in detail. The Brazilian A. mecolobus Miller, 2001, only known from the type material from Sao Paulo, is here recorded for Minas Gerais. Habitus photos of four additional Agaporomorphus species and Hydrodytes opalinus (Zimmermann, 1921) are provided. Altogether ten species of Agaporomorphus are now known

    Mosaic patterns of diversification dynamics following the colonization of Melanesian islands

    Get PDF
    The fate of newly settled dispersers on freshly colonized oceanic islands is a central theme of island biogeography. The emergence of increasingly sophisticated methods of macroevolutionary pattern inference paves the way for a deeper understanding of the mechanisms governing these diversification patterns on lineages following their colonization of oceanic islands. Here we infer a comprehensive molecular phylogeny for Melanesian Exocelina diving beetles. Recent methods in historical biogeography and diversification rate inference were then used to investigate the evolution of these insects in space and time. An Australian origin in the mid-Miocene was followed by independent colonization events towards New Guinea and New Caledonia in the late Miocene. One colonization of New Guinea led to a large radiation of >150 species and 3 independent colonizations of New Caledonia gave rise to about 40 species. The comparably late colonizations of Vanuatu, Hawaii and China left only one or two species in each region. The contrasting diversification trajectories of these insects on Melanesian islands are likely accounted for by island size, age and availability of ecological opportunities during the colonization stage

    Taxonomy and Biogeography without frontiers – WhatsApp, Facebook and smartphone digital photography let citizen scientists in more remote localities step out of the dark

    Get PDF
    Taxonomy and biogeography can benefit from citizen scientists. The use of social networking and open access cooperative publishing can easily connect naturalists even in more remote areas with in-country scientists and institutions, as well as those abroad. This enables taxonomic efforts without frontiers and at the same time adequate benefit sharing measures. We present new distribution and habitat data for diving beetles of Bali island, Indonesia, as a proof of concept. The species Hydaticus luczonicus Aubé, 1838 and Eretes griseus (Fabricius, 1781) are reported from Bali for the first time. The total number of Dytiscidae species known from Bali is now 34

    A CITIZEN SCIENCE CASE STUDY TO CHART INDONESIAN BIODIVERSITY: UPDATING THE DIVING BEETLE FAUNA OF BALI (COLEOPTERA: DYTISCIDAE)

    Get PDF
    We present new data on the geographical distribution of 16 species of diving beetles collected by an Indonesian citizen scientist in Bali. Copelatus oblitus Sharp, 1882, C. regimbarti Branden, 1884, C. sumbawensis Régimbart, 1899, and Hydroglyphus laeticulus (Sharp, 1882) are recorded for the first time from the island. We summarize what is known about the species’ distributions and habitats in Indonesia and beyond, and provide distribution maps and photographs of the sampling sites and habitus of the species. This work serves as a best practice template between individual local citizen scientists with local and international scientists

    Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

    Get PDF
    The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5' fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage >10;CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples;whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming pre-sorting process will yield approximately 30% more high score BINs compared to the nonsorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline

    Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    Get PDF
    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species

    MeCP2 binding to DNA depends upon hydration at methyl-CpG

    Get PDF
    MeCP2 is an essential transcriptional repressor that mediates gene silencing through binding to methylated DNA. Binding specificity has been thought to depend on hydrophobic interactions between cytosine methyl groups and a hydrophobic patch within the methyl-CpG-binding domain (MBD). X-ray analysis of a methylated DNA-MBD cocrystal reveals, however, that the methyl groups make contact with a predominantly hydrophilic surface that includes tightly bound water molecules. This suggests that MeCP2 recognizes hydration of the major groove of methylated DNA rather than cytosine methylation per se. The MeCP2-DNA complex also identifies a unique structural role for T158, the residue most commonly mutated in Rett syndrome

    Mitochondrial Cox1 Sequence Data Reliably Uncover Patterns of Insect Diversity But Suffer from High Lineage-Idiosyncratic Error Rates

    Get PDF
    The demand for scientific biodiversity data is increasing, but taxonomic expertise is often limited or not available. DNA sequencing is a potential remedy to overcome this taxonomic impediment. Mitochondrial DNA is most commonly used, e.g., for species identification ("DNA barcoding"). Here, we present the first study in arthropods based on a near-complete species sampling of a family-level taxon from the entire Australian region. We aimed to assess how reliably mtDNA data can capture species diversity when many sister species pairs are included. Then, we contrasted phylogenetic subsampling with the hitherto more commonly applied geographical subsampling, where sister species are not necessarily captured. We sequenced 800 bp cox1 for 1,439 individuals including 260 Australian species (78% species coverage). We used clustering with thresholds of 1 to 10% and general mixed Yule Coalescent (GMYC) analysis for the estimation of species richness. The performance metrics used were taxonomic accuracy and agreement between the morphological and molecular species richness estimation. Clustering (at the 3% level) and GMYC reliably estimated species diversity for single or multiple geographic regions, with an error for larger clades of lower than 10%, thus outperforming parataxonomy. However, the rates of error were higher for some individual genera, with values of up to 45% when very recent species formed nonmonophyletic clusters. Taxonomic accuracy was always lower, with error rates above 20% and a larger variation at the genus level (0 to 70%). Sørensen similarity indices calculated for morphospecies, 3% clusters and GMYC entities for different pairs of localities was consistent among methods and showed expected decrease over distance. Cox1 sequence data are a powerful tool for large-scale species richness estimation, with a great potential for use in ecology and β-diversity studies and for setting conservation priorities. However, error rates can be high in individual lineages

    The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    Get PDF
    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life’s species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’
    corecore