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SUMMARY

MeCP2 is an essential transcriptional repressor that
mediates gene silencing through binding to methyl-
ated DNA. Binding specificity has been thought to de-
pend on hydrophobic interactions between cytosine
methyl groups and a hydrophobic patch within the
methyl-CpG-binding domain (MBD). X-ray analysis
of a methylated DNA-MBD cocrystal reveals, how-
ever, that the methyl groups make contact with a pre-
dominantly hydrophilic surface that includes tightly
bound water molecules. This suggests that MeCP2
recognizes hydration of the major groove of methyl-
ated DNA rather than cytosine methylation per se.
The MeCP2-DNA complex also identifies a unique
structural role for T158, the residue most commonly
mutated in Rett syndrome.

INTRODUCTION

DNA methylation is an epigenetic signal in mammalian cells that

affects gene regulation, genomic stability, and chromatin structure

(Bird, 2002). The signal can be interpreted by a family of proteins

that recognize symmetrically methylated 50CpG30 (mCpG) pairs

via a methyl-CpG-binding domain (MBD) (Hendrich and Bird,

1998; Nan et al., 1993). Three family members (MeCP2, MBD1,

and MBD2) are able to recruit corepressor complexes that can

inhibit transcription with the aid of chromatin-modifying enzymes.

This study concerns the molecular basis of the DNA-binding spec-

ificity of the transcriptional repressor MeCP2 (Jones et al., 1998;

Nan et al., 1997, 1998). Mutations within the human MECP2 gene

are responsible for 95% of cases of the autism spectrum disorder

Rett syndrome (RTT) and are also implicated in X-linked mental

retardation and several other neurological conditions (Amir et al.,

2000; Neul and Zoghbi, 2004). Studies of mice lacking MeCP2,

which are convincing models of RTT, have implicated MeCP2 in

synaptogenesis and in the maintenance of neuronal function (Bien-

venu and Chelly, 2006). Restoration of the protein in MeCP2-

deficient mice with advanced neurological symptoms leads to

reversal of many aspects of the phenotype, suggesting that RTT

may also be therapeutically reversible in humans (Guy et al., 2007).

Solution structures of unliganded MBDs of MBD1 (Ohki et al.,

1999) and MeCP2 (Wakefield et al., 1999) and of a DNA-bound

MBD of MBD1 (Ohki et al., 2001) have been established by

NMR. Based on the structure of the MBD1-DNA complex, it

was inferred that the specificity for methylated DNA was due

to contacts between a hydrophobic patch on the MBD that inter-

acts with the DNA methyl groups directly. In this structural study,

we focused on the MBD itself, as over half of the missense

mutations in RTT patients are localized to this domain. Previous

studies have tested the effects of RTT mutations on DNA binding

and established that the majority of those within the MBD reduce

the affinity for methylated DNA (Ballestar et al., 2000; Free et al.,

2001; Kudo et al., 2001). The X-ray structure of the MeCP2 MBD

complex presented here rationalizes the effects of the most

common Rett mutations and provides a general model for meth-

ylated DNA binding that is dependent on structured waters.

RESULTS AND DISCUSSION

To obtain a high-resolution crystal structure of the MeCP2 MBD-

DNA complex, we took account of recent evidence that a run of

four or more AT bases adjacent to the symmetrical mCpG dinu-

cleotides promotes high-affinity binding of MeCP2 (Klose et al.,

2005). A polypeptide corresponding to amino acids 77–167

of the MeCP2 MBD domain (Figure 1) was expressed and

cocrystallized with a 20 bp DNA fragment of promoter III (nucle-

otides �108 to �90) of the mouse-brain-derived neurotrophic

factor (BDNF) gene, which contains a central mCpG pair and

an AT run. This promoter (Figure 2A) is implicated as an

MeCP2 target (Chen et al., 2003; Martinowich et al., 2003).

Crystals of a selenomethionine form of MeCP2-MBD (A140Se-

Met, SeMet94) were used to provide sufficient anomalous signal

for phase determination using SAD (Table 1). Soaking the crys-

tals in MnCl2 solution improved resolution from 3 to 2.5 Å. Crys-

tals of the wild-type protein (A140) had an essentially identical

structure with a Ca rmsd fit of 0.44 Å (Table 1). The structure of

the MeCP2-MBD in complex with DNA (Figure 2B) is similar to

that of the unliganded structure determined by NMR (Wakefield

et al., 1999), with an rmsd fit for Ca atoms of 2.33 Å (Figure 2C).

The most notable difference concerns loop L1, which is drawn

toward the DNA through four hydrogen bonds with the phos-

phate backbone on the face of the major groove that includes

the pair of cytosine methyl groups (Figure S1).

The mCpG-binding surface is unexpectedly hydrophilic. The

C5 methyl groups (m5C8 and m5C33) form close contacts (<4 Å)

with 13 and 12 neighboring atoms, respectively (Figure 2D and

see Table S1 available online). Of these 25 interactions, only
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two (m5C33 to R133CG and R133CB) are classically hydropho-

bic in character. MeCP2 recognition of mCpG involves the five

water molecules W12, W24, W10, W21, and W22, each making

a CH.O interaction (Figure 2). W24 and W22 form a tetrahedral

arrangement of hydrogen bonds that bridge DNA with protein

and also make CH.O interactions with both methyl groups of

the mCpG dinucleotide pair (Figures 2D and 2E). W22 forms

four hydrogen bonds with D121, W24, W21, and N4 of m5C33

plus a CH.O interaction with the C5 methyl group of m5C33.

W24 forms four conventional hydrogen bonds with Y123,

R133, W22, and N4 of m5C8 plus a CH.O interaction with the

methyl group of m5C8 (Figures 2D and 2E and Table S1). Inter-

estingly, CH.O hydrogen bonds have been implicated in methyl

group recognition during lysine methylation by SET domain

lysine methyltransferases (Couture et al., 2006).

The only MeCP2-MBD residues that directly interact with DNA

bases in the crystallized BDNF sequence are D121, R111, and

R133 (Figures 2D and 2E and Table S1). D121 makes a CH.O

hydrogen bond of 3.5 Å with the methyl group of m5C8 (Fig-

ure 2D). The hydrogen bonds formed between the symmetrical

arginine fingers (R111 and R133) and each guanine of the

mCpG pair (Figure 2E) occur frequently in diverse examples of

protein-DNA recognition (Luscombe et al., 2001). Both arginine

fingers lie in a plane with the guanine bases and are locked in po-

sition by salt bridges with the carboxylates of D121 and E137

(Table S1). This symmetrical arrangement of the arginine side

chains places the guanidinum groups directly above/beneath

the methyl groups of the methylated cytidine bases with an aver-

age methylguanidinium distance of 3.7 Å (Figure 2D). Specificity

for the mCpG base pair derives in part from the constrained con-

figuration of arginine side chains in contact with the juxtaposed

guanines that are exclusive to the CpG sequence motif.

We considered the possibility that structurally conserved

water molecules that are present due to cytosine methylation

in the major groove determine the mCpG-binding specificity of

MeCP2. There are currently 47 m5C-containing double-stranded

DNA structures in the Nucleic Acid Database with a resolution

better than 3 Å (Berman et al., 1992). Of these, 78% have at least

one m5C base coordinating a water molecule through a CH.O

hydrogen bond to the methyl carbon and simultaneously a con-

ventional hydrogen bond to N4 (similar to the interactions shown

by W22 and W24). Additionally, 84% contain at least one water

molecule bridging a DNA phosphate group to the methyl group

of m5C (similar to the interactions shown by W12 and W10).

This methylation-specific hydration pattern has been noted pre-

viously and was speculated to potentially specify recognition of

methylated DNA by proteins (Mayer-Jung et al., 1998).

The importance of water in MBD recognition is supported by

mutagenesis studies of MBDs from MeCP2 and MBD1. Y123

is of particular interest, as its contact to DNA is via two bridging

hydrogen bonds from its hydroxyl group to W24 and W12 (Fig-

ure 2E). The Y123F mutant lacks this hydroxyl group and has a re-

duced affinity for methylated DNA (Figure 3). The loss of binding

is therefore attributable solely to the interaction of the hydroxyl

Figure 1. Sequence Comparison of Methyl-CpG-Binding Domains of the MBD Protein Family from Human, Mouse, and Xenopus

Secondary structure elements from the X-ray structure of MeCP2 are denoted by arrows (b strand) and coils (a helix). Mutations that have been associated with

neurological disease are shown. Human (H), mouse (M), and Xenopus (X).
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Figure 2. The X-Ray Structure of MeCP2-MBD Complexed with BDNF Promoter DNA at 2.5 Å

(A) BDNF promoter DNA sequence used in the cocrystal X-ray structure. The overhanging T/A bases were incorporated to promote crystallization through end-

to-end DNA stacking.

(B) The X-ray structure of the MeCP2-MBD in complex with DNA. The methyl groups of the mCpG pair are shown as spheres. The b strands (green) and a helix

(blue) are connected by the loops L1 (R111– K119), L2 (N126–K130), and L3 (R133–S134). The tandem Asx-ST motif (D156–R162) is highlighted in red.

(C) Overlay of the unliganded MeCP2 structure determined by NMR (gray) with the X-ray structure (blue and red) in complex with DNA (yellow). The Asx-ST-motif

of the X-ray structure is highlighted in red.

(D) Nonbonded contacts to the m5C methyl groups. Black dashed lines show all nonbonded contacts to the m5C methyl groups of less than 4 Å. The m5C methyl

groups are shown as yellow balls and water molecules W21, W22, and W24 as purple balls. Distances for all seven m5C methyl CH.O contacts are shown.

A complete list of distances for these interactions is given in Table S1.

(E) Hydrogen-bonding interactions involving the mCpG pair. Hydrogen bonds are shown as black dashed lines. The two m5C methyl.water contacts are drawn

as dashed red lines. Distances for all hydrogen bonds shown in this figure are tabulated in Table S2. Specific hydrogen bonds formed between R111 and G9

(chain B) and R133 and G34 (chain C) position the guanidinium groups directly over the methyl groups of the m5C bases.
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group with ‘‘structural waters’’ W24 and W12, as no other DNA

contacts less than 4 Å are made by the Y123 side chain. In a cor-

responding mutagenesis study of MBD1, reduced mCpG bind-

ing caused by loss of the hydroxyl group of Y34 (Y34F is equiv-

alent to Y123F in MeCP2; see Figure 1) was explained by loss of

a putative hydrogen bond between Y34 and the amino group of

m5C (Ohki et al., 2001). Our structure fails to support the equiv-

alent Y123-m5C interaction in MeCP2, and a more likely expla-

nation in the light of our closely analogous MeCP2 structure is

that hydrogen bonds to bridging structural water molecules

have been lost (Figure 2E). Further evidence for the importance

of this interaction comes from mutagenesis of mammalian

MBD3, which does not normally bind specifically to methylated

DNA and has phenylalanine (F34 in MBD3) in place of tyrosine

at the equivalent position (see Figure 1). Interestingly, MBD3

can be converted into a methyl-CpG-binding protein by addition

of a hydroxyl group via an F34Y mutation (Fraga et al., 2003). In

addition to Y123, D121 is involved in water coordination, although

this residue also forms a direct CH.O interaction with the methyl

group of m5C8 (Figure 2E) and two hydrogen bonds to R111. Mu-

tagenesis of this aspartate in MeCP2 (D121A or D121C; Free et al.

[2001]) or the equivalent residue in MBD1 (D32A; Ohki et al.

[2001]) severely reduces binding to methylated DNA. The muta-

genesis data derived from several members of the MBD protein

family therefore support the structural evidence that water is

a key feature for recognition of mCpG by MBD domains.

We propose that the water-mediated recognition mode estab-

lished here is conserved in other members of the MBD protein

family. The crystal structure of the MeCP2 MBD complexed

with DNA indeed resembles the NMR structure of the MBD1

MBD-DNA complex published by Ohki and coworkers (Ohki

et al., 2001) with an rmsd fit of Ca atoms of 4.2 Å (Figure S2). It

was previously deduced, however, that recognition of the cyto-

sine methyl groups by MBD1 depends upon a hydrophobic

patch comprising five amino acids that are conserved among

MBD proteins (Ohki et al., 2001). Water molecules were not con-

sidered in the MBD1 structure, and it is possible that analysis of

spin diffusion effects mediated by tightly bound waters will

permit reconciliation of the NMR data with the hydrogen bond

configuration reported here.

The C-terminal region of the MBD comprises an unusual tan-

dem ‘‘Asx-ST motif’’ (Figure 4) that consists of an Asx turn

(156DFT158) followed immediately by an ST motif (Wan and Mil-

ner-White, 1999a, 1999b) (158TVTG161). The Asx turn is formed

by a hydrogen bond that connects the main-chain NH group of

T158 and the side-chain carbonyl of D156. The ST motif is held

together by hydrogen bonds to the hydroxyl group of T158 (Fig-

ure 4). The tandem motif is further stabilized by hydrogen bonds

to R106 via the main-chain carbonyl group of T158 and V159

(Figure 4). The structure shows that T158 occupies a pivotal po-

sition that coordinates the two consecutive turns. To test this, we

assayed the effect of T158 mutations on DNA binding. T158M,

which is the most common missense mutation causing RTT,

abolished DNA binding under our experimental conditions (Fig-

ure 3). Substitution of T158 by the smaller alanine side chain

(T158A; also a RTT mutation) again strongly impaired DNA bind-

ing, arguing against a purely steric interference by the bulky

methionine side chain. In contrast, T158S, which retains the

hydroxyl group that is implicated in hydrogen bond stabilization

of the tandem Asx-ST motif, maintained substantial affinity for

methylated DNA (Figure 3).

It is notable that two of the four most frequent missense muta-

tions found in RTT (T158M and R106W [Figure 1, databases at

http://www.mecp2.org.uk and http://mecp2.chw.edu.au]) affect

residues that stabilize the tandem Asx-ST motif. The structure is

not induced by DNA binding, as it is present in the unliganded

MeCP2 MBD (see Figure 2C) (Wakefield et al., 1999). The Asx-ST

motif contacts DNA via a hydrogen bond between V159(N) of the

Asx-ST motif and the phosphate oxygen of T31 (base paired with

A11) at the start of the AT run (11AATT14) (Figure 4 and Table S2).

Runs of four to six consecutive A/T bases are known to cause nar-

rowing of the minor groove, leading to DNA bending (Figure S3A).

In our structure, interphosphate distances showed a minor groove

at 11AATT14 that is significantly (2.9 Å) narrower than an ideal

B-DNA minor groove (Figure S3B). We speculate that the DNA

bend due to the 11AATT14 run is required to accommodate the

stabilizing interaction with the Asx-ST motif in intact MeCP2.

The locations of naturally occurring MECP2 mutations that

underlie RTT and other neurological conditions highlight the im-

portance of the MBD domain (Amir et al., 1999; Bienvenu and

Chelly, 2006; Kriaucionis and Bird, 2003). More than half of all

Table 1. Crystallographic Statistics

Crystal

Selenium Peak

(A140SeMet, SeMet94) Native (A140)

Data Collection

Space group C2 C2

Unit cell lengths (Å)

a 79.71 82.24

b 53.60 53.92

c 65.73 63.24

b (deg) 132.10 128.17

Wavelength (Å) 0.97800 0.97935

Outer resolution shell (Å) 2.64–2.50 2.85–2.70

Completeness (%)a 98.5 (90.7) 97.1 (87.3)

Anomalous

completeness (%)a
98.4 (89.9) —

Multiplicityb 7.1 (5.3) 3.5 (2.9)

Total reflectionsa 50,307 (5055) 20,686 (2157)

Unique reflectionsa 7122 (950) 5914 (750)

<I >/s(I)a 19.7 (3.0) 13.5 (1.6)

Rmeas (%)c 8.8 (47.4) 8.9 (62.5)

Refinement

Rcryst
d/Rfree (%) 21.2/ 27.6 23.0/ 29.5

Geometry

Rmsd bond/angles (Å, deg) 0.009/1.85 0.016/2.67
a Values in the parentheses are for the highest resolution shell.
b Values in the parentheses are for anomalous multiplicity.
c Rmeas = {

P

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{nh=nh � 1}

p P

j

jÎh � Îhj j}=
P

hj

Ihj with Îhj =
�P

j

Ihj

�
=nh and

where nh is the multiplicity of h.
d Rcryst =

P

hkl

jjFoj � kjFcjj=
P

hkl

Fo, where Fo and Fc are observed and

calculated structure factors, respectively. Rfree is Rcryst calculated for

a test set of randomly chosen 5% of the data.
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known disease-causing missense mutations affect the core

MBD between amino acids 97 and 161, although this constitutes

only �13% of the total amino acid sequence. Complete conser-

vation of the amino acid sequence of the MeCP2 MBD between

mice and humans further emphasizes its functional significance.

The unexpected water-mediated recognition of the methylated

CpG dinuclueotide and the involvement of an unusual Asx-ST

motif can account for the effects of a number of biologically

important site point mutants in the MBD family. Future studies

focusing on MeCP2 domains in complex with macromolecular

Figure 3. Mutagenesis Confirms the Importance of Y123 and T158 for MBD Binding to Methylated DNA In Vitro

(A) Electrophoretic mobility shift assays were performed with the 20 bp BDNF DNA sequence as probe in the presence of wild-type (WT) or mutant forms of the

77–167 fragment of MeCP2. The first lane (WT+Me�) shows absence of a protein DNA complex between wild-type MBD and nonmethylated DNA. Binding to

methylated DNA is disrupted by T158M and T158A mutations, whereas binding is minimally affected by the conservative T158S mutation. The Y123F mutation

significantly reduces DNA binding.

(B) A plot of the fraction of labeled probe complexed at protein concentrations of 250 nM, 500 nM, 750 nM, and 1 mM as measured by densitometry. Estimated

standard deviations (shown as vertical bars) were calculated from measured intensities from three separate gels and scaled to the band from the probe

complexed with 1 mM wild-type MBD, which was taken as 100%. Plots refer to WT (black), T158A (blue), T158M (yellow), T158S (green, from two measurements),

and Y123F (red).

Figure 4. T158 Plays a Structurally Impor-

tant Role in Forming the Tandem Asx-ST

Motif

The Asx turn is composed of D156, F157, and

T158, with the motif-defining hydrogen bond

formed between the carboxylate side chain and

the main-chain amine nitrogen of T158. The ST

motif is the modified b turn consisting of T158,

V159, T160, G161, and R162 with the side-chain

hydroxyl group of T158 hydrogen bonding to the

main-chain nitrogen atoms of G161 and R162.
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partners promise to illuminate further the molecular role of this

protein in interpreting the DNA-methylation signal.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Recombinant proteins were expressed and purified as initially described

(Klose and Bird, 2004) with some modifications. After cell recovery and sonica-

tion, bacterial crude lysate was loaded onto an Ni-NTA (Novagen) column on

an FPLC system (Applied Biosystems) and washed with 12% N250 (20 mM

NaH2PO4, 300 mM NaCl, 250 mM imidazole). Protein was eluted with a gradi-

ent from 12%–40% of N250. Peak fractions containing MBD were pooled,

concentrated, and applied onto a Sephacryl-200 gel filtration column on an

FPLC system. Fractions containing MBD protein were pooled and loaded

onto a cation-exchange SP-Sepharose column. Peak fractions were eluted

with a linear gradient of 300–500 mM NaCl, containing 20 mM HEPES (pH

7.9). Fractions were combined and dialyzed overnight into CE300 (20 mM

HEPES [pH 7.6], 300 mM NaCl). Protein was concentrated to �30 mg/ml

and kept at 277K.

For the production of selenomethionyl protein, the recombinant plasmid was

transformed into methionine-deficient B834(DE3)pLys cells. Cells were grown

in minimal medium containing selenomethionine (10 mg/ml) and the other

19 amino acids (4 mg/ml each). Expression and purification of selenomethionyl

protein was then performed as above except 1 mM of DTT was incorporated in

all buffers.

Incorporation of Methionine by Site-Directed Mutagenesis

Site-directed mutagenesis was carried out according to the manufacturer’s

protocol (QuikChange, Stratagene). A pair of mutagenic primers was designed

to contain the desired point mutation. Mutant plasmids were then transformed

into BL21(DE3)pLys or B834(DE3)pLys cells for native or selenomethionyl

mutant protein expression and purified as described above.

Nucleic Acid Preparation

Oligonucleotides for cocrystallization were synthesized by Oligos Etc. (Wilson-

ville, OR) and purified by HPLC. The lyophilized oligonucleotides were resus-

pended in TEN buffer (10 mM Tris-HCl [pH 8.0], 0.5 mM EDTA, 100 mM

NaCl) to a concentration of 2 mM. Complementary strands were mixed in equi-

molar amounts and annealed by heating to 368K and then cooled to room

temperature over 3 hr.

Crystallization

The complex of DNA-protein was prepared by mixing a 1:1.3 ratio of protein to

DNA in CE100 (20 mM HEPES [pH 7.9], 100 mM NaCl) and incubated at room

temperature for 30 min to promote complex formation. The final concentration

of DNA and protein were 260 and 200 mM, respectively. Equal volumes of the

DNA-protein complex and precipitant solution (26% PEG2000, 200 mM am-

monium acetate, 10 mM Mg acetate, 50 mM Na cacodylate [pH 6.5], 2 mM

DTT) were mixed and equilibrated against the precipitant solution using the

hanging drop vapor diffusion method. Rectangular crystals with maximum

dimension of 0.5 mm grew within 3 days. The crystals were flash frozen in liquid

nitrogen. Most crystals diffracted to�3 Å maximum resolution, but soaking the

crystal for 15 min in a precipitant solution in which the Mg acetate was

replaced with MnCl2 (35% PEG2000, 200 mM ammonium acetate, 10 mM

MnCl2, 50 mM Na cacodylate [pH 6.5], 2 mM DTT) improved resolution to

2.5 Å.

Data Collection and Structural Determination

Native and anomalous data sets were collected at ESRF, Grenoble (Table 1).

The structure was solved by SAD using the Se peak data set from the crystal,

which was soaked in a solution containing 10 mM MnCl2. These crystals

belong to space group C2 with unit cell dimensions a = 79.71, b = 53.60,

c = 65.73 Å, and b = 132.10�. There is one molecule per asymmetric unit

with a calculated solvent content of 52.6%. Diffraction data were collected

to a resolution of 2.5 Å (Table 1). MOSFLM/SCALA (CCP4, v6.0.1) (Potterton

et al., 2002) was used to process the data, and the output was fed into PHENIX

(Adams et al., 2002), which was used to locate the heavy atoms and for phase

determination. Model building and refinement were performed with COOT

(Emsley and Cowtan, 2004) and REFMAC5.2 (Murshudov et al., 1997), and

the fully refined structure gave calculated Rcryst and Rfree values of 21.2 and

27.6, respectively. Structural analysis was performed using MSDMotif server

(Golovin et al., 2004), 3DNA (Lu and Olson, 2003), and HBPLUS (McDonald

and Thornton, 1994). All figures were prepared using PyMOL (DeLano, 2003).

Gel Retardation Assay

All oligonucleotides for gel retardation assays were synthesized by Sigma-

Genosys and purified by desalting. The protocol for 32P-dATP labeling and

native gel electrophoresis was described previously (Klose et al., 2005).

ACCESSION NUMBERS

The atomic coordinates of the MeCP2 MBD domain cocrystallized with a 20 bp

DNA fragment have been deposited with the Protein Data Bank (PDB) under

the accession code 3C2I.

SUPPLEMENTAL DATA

Supplemental Data include three figures, two tables, and Supplemental Refer-

ences and can be found with this article online at http://www.molecule.org/cgi/

content/full/29/4/525/DC1/.
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